Customer Care Solutions NEM-4 Series Transceivers

6 Troubleshooting Instructions

	2
Introduction to NEM-4 Troubleshooting	3
General guidelines for NEM-4 trouble shooting	3
I ools needed for I roubleshooting	3
General guidelines	3
Nominal current consumption	4
Troubleshooting paths	5
Dead or jammed device	5
Partially damaged device	6
Most common symptoms reported by customer	6
ASIC is changed	7
Test points	7
"CONTACT SERVICE" on display	.10
Baseband HW subarea Troubleshooting	11
Flashing Troubleshooting	.11
ADSP flashing Troubleshooting	.13
Energy management Troubleshooting	.14
Audio Troubleshooting	.31
Headset Troubleshooting	.35
Memory Troubleshooting	.37
MMC Troubleshooting	.38
VIBRA	.40
ZOCUS	41
UI Troubleshooting	41
UI Troubleshooting cases	41
Keymat Backlight	42
Keyhoard	43
Display blank	.45
Backlight does not turn on	.77
EM Padia Traublashaating	.45
EM Dadio component lavout	40
FM Radio Component layout	.40
PM Radio Houbleshooting diagram	.40
All manifestions in fault for line all ante	55
Abbreviations in fault finding charts	.33
Introduction	.53
RF Key component placement	.54
RF Measurement points	.55
RF in general	58
RF Power Supply Configuration	61
Receiver	62
General instructions for RX Troubleshooting	.62
Receiver fault finding	.66
Rx Signal paths	.68
Transmitter	70
General instructions for EGSM TX Troubleshooting	.70
TX Path of the transmitted EGSM900 signal	.79
General instructions for GSM1800/1900 TX Troubleshooting	.83
DCS 1800/PCS 1900 Tx fault finding flow chart	.83
Path of the transmitted GSM1800/1900 signal	.84

Fault finding chart for GSM1800/GSM1900 transmitter	85
NEM-4 Synthesizer	
General instructions for Synthesizer Troubleshooting	
26 MHz reference oscillator (VCXO)	90
VCO	90
Fault finding chart for PLL Synthesizer	91
PLL Block diagram	92
PLL power supply	93
Frequency lists	96
Phoenix tuning	
RF tuning after repairs	99
RX Calibration (incl. VCXO Calibration)	99
RX AGC limits	104
RX Band Filter Response Compensation	107
TX Power tuning	114
TX I/Q Tuning	116
Bluetooth Troubleshooting	130

Introduction to NEM-4 Troubleshooting

This document is intend to be a guide for localizing and repairing electrical faults in the NEM-4 device. First there is a brief guide for fault localizing. Then fault repairing is divided into Troubleshooting paths.

Before any service operation you must be familiar with the NEM-4 product and module level architecture. You have to also be familiar with the NEM-4 specified service tools such as the Phoenix service software, flashing tools and software.

General guidelines for NEM-4 trouble shooting

Tools needed for Troubleshooting

- Service tools (as listed at service tools chapter in service manual)
- Laboratory power supply with current indicator
- Oscilloscope
- Digital multimeter ...

General guidelines

If the device cannot be turned on by any means, see "dead device" trouble shooting

Current consumption (missing consumption) gives an idea whether the device is able to start up.

Dropping supply voltage or very large current consumption indicates a short circuit

Check whether the connection with Phoenix works and what can be discovered with Phoenix (ADC-readings, baseband selftest, bb-calibrations etc.)

Check baseband selftests with Phoenix if "CONTACT SERVICE" is shown on the display.

Check visually display and rocker faults

Force phone to LOCAL mode and make keyboard test by phoenix

Check that board-to-board connector is OK, and connectors make good contacts.

If liquid damage, stop repairing!

Flash phone before disassembling it if fault is not obvious and Phoenix connection is OK.

Disassemble phone:

Check failed module visually:

Mechanical damages?

Solder joints OK?

Continue with specific trouble shooting procedure for the module:

If there is an obvious fault, repair it before reflashing the device

Flash first if a fault is not obvious

If flashing is not working go to flashing trouble shooting

Due to CSP packages short circuits or broken solder joints are not easily seen. If the examined signal seems to be continuously in low or high level, then measure for possible short circuit to ground (signal low) or to supply voltage (signal high) Note that if a problem is not found from any visible contact/component it can be under CSPs where the signal is connected.

Care must be taken when assembling and disassembling the transceiver. Failure to do this may result in unnecessary damage to device.

Nominal current consumption

NOTE: Service tools need some amount of current to work.

The following current consumption values are measured from a complete NEM-4.

Vbatt = 3.6V

Measured nominal currents are drawn from the main battery.

Measurements have been made with a current probe connected to an oscilloscope.

Operating Mode	Current Consumption
ldle	5mA
2W audio call	350mA (LOCAL MODE)
MP3 playback	nominal 80mA
FM-radio playback	nominal 25mA

Troubleshooting paths

Dead or jammed device

Partially damaged device

If the device is working, but some functionality is missing try to localize where the problems is and see relevant part of this manual. E.g audio is not working see "Audio Troubleshooting", if charging is not working see chapter Charging Troubleshooting etc.

Most common symptoms reported by customer

In this chapter is described most common symptoms reported by customers when the device is brought in for service. Some tips where the trouble can be found are given also. When Troubleshooting use these tips and follow the given Troubleshooting path.

Most common symptoms for audio problems

"Earpiece sound is missing"

"Headset is not recognized"

"Microphone is not working"

"Volume cannot be adjusted"

"Ringing tones does not work"

"Audio volume too low"

"Radio does not work"

"IHF sound is missing"

"Headset sound is missing"

"MP3/AAC play does not work"

If the symptom is something like above, see audio Troubleshooting.

Most common symptoms for USB and BT problems

"Bluetooth does not work or a connection can not be established"

"USB connection does not work or PC cannot find device"

If symptoms are something like above, follow USB or Bluetooth Troubleshooting guide-lines.

Symptoms related to energy management

"Phone does not stay on" "Charging is not working" "Time is lost during battery change" "Charging takes too long" "Operating time is very short" These symptoms lead to relevant part of energy management Troubleshooting

Problems related to UI:

"Keypad is not working" "Backlight is dim" "Backlight not even" "Backlight is blinking" "Keypad or display backlight is not working" "Display related problems"

"Rocker is not working"

Most common RF related symptoms:

"Call cannot be made" "Phone does not find signal" "Call is often dropped" See RF Troubleshooting.

ASIC is changed

ASIC's can be changed only at a defined service level.

UEM changed

If UEM is changed baseband calibrations should be made. New IMEI must be programmed also. ZOCUS calibration is not necessary.

UPP_WD2 changed

IMEI must be reprogrammed.

ZOCUS changed

Zocus must be re-calibrated

Test points

Table 1: Test points in Baseband area (F6)

Test Point	Signal description
J128	GPIO1 (WD2->ADSP)
J129	GPIOO (ADSP->WD2)
J904	VCOREA enable (N261 EN, UEMRST)
J900	VHPA enable (N266 EN, GENIO14)
J901	VAUD (N265 EN, GENIO25)
J903	VAUX2 enable (N264 EN, GENIO16)
J218	GENTest0
J004	N330 (Boomer) _SHUTDOWN (from WD2 GENI08)

J906	ADSP S11 (WD2->ADSP through UEM level shifter IRLEDC)
J907	ADSP S13 (ADSP->WD2 through UEM level shifter IRRXN)
J558	ADSP CLKR0 (BCLK_OUT) to AIC
J559	ADSP DR0 (DIGITAL_AUDIO_IN) from AIC
J560	ADSPDX0 (DIGITAL_AUDIO_OUT) to AIC
J561	ADSP FSX0 (LRC_OUT) to AIC
J562	ADSP C1 (ADSP Flash OE#)
J563	ADSP C2 (ADSP Flash WE#)
J567	ADSP C3 (ADSP Flash CE1#)
J564	ADSP GPIO2
J565	ADSP GPIO3
J312	FLASH _CE (D310)
J315	FLASH CLK (D310, D311, D313)
J311	FLASH _CE (D311)
J313	FLASH _CE (D313)
J314	SDRAM CLK (D312)
J197	GPI013 (Keyboard matrix ROW0)
J196	GPI012 (Keyboard matrix ROW1)
J179	GPI016 (Keyboard matrix COL4)
J116	GPIO30 (Keyboard matrix COL5)
J119	GPI015 (Keyboard matrix ROW3)
J118	GPI014 (Keyboard matrix ROW2)
J176	GPI018 (Keyboard matrix ROW5)
J175	GPI017 (Keyboard matrix ROW4)
J177	GPIO10 (Keyboard matrix COL2)
J178	GPIO11 (Keyboard matrix COL3)
J117	GPIO8 (Keyboard matrix COLO)
J180	GPIO9 (Keyboard matrix COL1)
J181	GENIO1 (ROCKER1)
J145	GENIO2 (ROCKER2)
J182	GENIO10 (ROCKER3)
J194	GENIO28 (MUSIC PL KEY)

J184	GENIO11 (ROCKER5)
J183	GENIO13 (ROCKER4)
J912	LCD signal
J185	LCD signal
J186	LCD signal
J187	LCD signal
J188	LCD signal
J189	LCD signal
J190	LCD signal
J191	LCD signal
J113	LCD signal
J114	LCD signal
J905	UEM DLIGHT (Display LED driver control)
J404	SIM Data
J405	SIM Clock
J406	SIM Reset
J913	MMC CMD
J914	MMCDATO
J577	N470 Dir3
J579	N470 Dir2
J576	N470 A1
J578	N470 A3
J593	N470 A2
J910	N470 EN2
J911	N470 EN1
J568	USB PU ?
J569	USB D+
J575	USB D-
J398	VBAT (After current sense monitor) R382
J902	N301Zint

"CONTACT SERVICE" on display

CONTACT SERVICE on display (Self-tests by Phoenix)

Display information: "Contact Service"

This fault means that software is able to run and thus the watchdog of UEM can be served.

Selftest functions are executed when the phone is powered on and if one or more selftest functions fail, the message "Contact Service" is shown on the display.

MCU selftest cases can be split into two categories: The ones that are executed during power up and the ones that are executed only with a PC connected. These test and the items included are as follows:

🏀 Self Test			
	_		
Test items	S	Result	<u>B</u> un
ST_AUX_DA_LOOP_TEST		Passed [0]	
ST_CURRENT_CONS_TEST		Passed [0]	Run <u>A</u> ll
ST_EAR_DATA_LOOP_TEST	s	Passed [0]	
ST_KEYBOARD_STUCK_TEST		Passed [0]	Help
ST_MBUS_RX_TX_LOOP_TEST	s	Passed [0]	<u></u>
ST_SIM_CLK_LOOP_TEST	s	Passed [0]	
ST_SIM_IO_CTRL_LOOP_TEST	s	Passed [0]	
ST_SLEEP_X_LOOP_TEST		Passed [0]	
ST_TX_IDP_LOOP_TEST	s	Passed [0]	
ST_TX_IQ_DP_LOOP_TEST		Passed [0]	
ST_UPP_REGISTER_VER_TEST	s	Passed [0]	
ST_BACKUP_BATT_TEST	s	Passed [0]	
ST_LPRF_IF_TEST		Passed [0]	
ST_EXTERNAL_RAM_TEST		Not executed [3]	
ST_RF_CHIP_ID_TEST		Passed [0]	
ST_RADIO_TEST		Passed [0]	
ST_LCD_TEST		Passed [0]	
□ ST_LPRF_AUDIO_LINES_TEST		Passed [0]	
ST_UEM_CBUS_IF_TEST	s	Passed [0]	
ST_VIBRA_TEST		Passed [0]	
ST_KEYB_LINE_TEST		Passed [0]	
ST_ZOCUS_CBUS_IF_TEST		Passed [0]	
□ ST_ADSP_TEST		Passed [0]	
1			

If some selftest is failed, see relevant chapter in this Troubleshooting document.

Baseband HW subarea Troubleshooting

Flashing Troubleshooting

NEM-4 has three memory components installed on the main pwb. The best indication of which one is causing problems can be obtained by flashing the device. It has to be kept in mind that all three flashes are interfaced with UPP WD2 asic that might it self have some problems. The necessary steps are described below. Phoenix error messages during flashing greatly help on defining what is wrong. To be able to flash the device, most device BB area components must function properly.

ADSP flashing Troubleshooting

ADSP flash environment consists of ADSP, ADSP flash, EMIF (external memory interface), communication interfaces (USB and UPP/UEM), ADSP flash protecting control and power supplies for ADSP and ADSP flash.

Copyright © 2003 Nokia Corporation Company Confidential

Energy management Troubleshooting

Device does not stay on

If the device is switched off without any visible reason, there may be problems in the following areas:

- UEM watchdog problem (WD is not updated by SW)
- BSI line problem (BSI line is floating => contact failure)
- Battery line problem
- Soldering problem

The most likely reason is UEM WD (watchdog), which turns the device off after about 32 seconds if SW is jammed.

This may caused by SW problem, UPP_WD2 problem (Not server by SW), UEM or memory malfunctions.

The following tests are recommended:

- General power checking
- Clocks
- Memory testing
- Serial Interface

If there is something wrong in BSI line, the device seems to be dead after the power key is pressed. However the regulators of the device are on a few seconds before the power-down.

This mode can easily be detected from the current consumption of the device. After a few seconds the current consumption drops almost to 0 mA.

In this case check component or soldering

Battery connector X381
EMI-filter R385
UEM D190 (pin number C2)

If phone boots to TEST or LOCAL mode with normal battery, BSI is short circuited to ground. Check EMI-filter and filtering capacitors, which are located to BSI.

General power checking

Use service tool FLA-41R. Battery voltage should be at least 3.6V. After phone disassembly, use module jig MJS-8Q.

Copyright © 2003 Nokia Corporation Company Confidential

VCOREA Troubleshooting

NOKIA

VMEMA Troubleshooting

Company Confidential

Audio Power Troubleshooting

NOKIA

CCS Technical Documentation

Clocks Troubleshooting

Clocks include the following: RF-clock ADSP Clock DBUS, CBUS clocks Flash and SDRAM clocks Sleep clock Bluetooth clock SIM clock MMC clock

NEM-4 has three external oscillators for baseband clocking. The main clock is generated by 26MHz oscillator (B601) and routed through Mjoelner RF ASIC to UPP_WD2 engine ASIC. Sleep Clock is generated by 32kHz oscillator to UEM, which then supplies it to UPP_WD2, Bluetooth module and FM radio chip. The third oscillator generates 12MHz clock for ADSP and AIC. UPP_WD2 uses the system clock to generate various clocks for different purposes.

Figure 1: Clock diagram

System clock can be measured from the lower pad of capacitor C171. This clock should be running when phone is on.

In SLEEP mode the VCXO is off. UEM generates low frequency clock signal (32.768 kHz) that is fed to UPP_WD2, Bluetooth and ZOCUS.

When the flashing of the device does not succeed, but powering is OK, follow these instructions.

Note: The absence of clocks may indicate that the device (put phone to LOCAL mode when the sleep is not allowed or press buttons so that phone is not in sleep mode) is in sleep mode. Make sure that the device is not in sleep during clocks measuring.

IMPORTANT: Clock signals have to be measured with 1M Ω (or greater) probes!

Measure signal from J170. This should be 26Mhz clock signal. See RF Troubleshooting for further information.

Check the crystal oscillator (B190) is oscillating at 32.768kHz frequency. If not change B190. If ok, measure SleepClk from test point from capacitor C521. Frequency should be the same 32.678kHz (see Figure 2, "Sleep clock," on page 20 below.) If not change UEM.

ADSP Clock (12MHz sine wave) can be measured from oscillator B550.

Charging checking

Use the BL5-C battery and JBV-1/MJF-26 calibration set to test charging. (NOTE: power supply cannot be charged if it not has a current sinking capability.) When you are charging totally empty battery, remember that start-up charging might take a little bit longer time than normal. During this time display is blank.

If charger is not NMP approved type and its current and voltage is not within NMP charger window then software does not start charging and there is "NOT CHARGING" on the display. Voltage should be between 5.3V – 9.5V and current between 200mA –

900mA

Remove and reconnect battery and charger few times before you start to measure device. This check ensures that the fault really exists.

(Refer to "Charging Troubleshooting")

Energy management calibration

During energy management calibration A/D-converter, BSI, Btemp, Battery voltage, Charger voltage and Charger current are calibrated.

		Calibrated —	Phone Values	
	ADC Offset [mV]		-3	
	ADC Gain [0.0001 mV/bit]		27559	Calibrate
Battery Size	BSI Gain (100 Ohm)		1033	
🗖 Battery Temperatui	re BTEMP Gain			Save To Phone
Ratteru) (oltaga	SCAL Offset [mV]		2511	Read From Phor
I♥ Dattely <u>v</u> oltage	SCAL Gain	Í	10531	C <u>h</u> ange Phone
🔽 Charger Voltage	VCHAR Gain		60849	11-1-
Charge Current	ICHAR Offset		0	neip
i € i chaige c <u>u</u> itefit	ICHAR Gain		4096	
Battery Current	IBAT Gain		119	

Limits for calculated calibration values are as follows:

Channel	Low	<u>High</u>
ADC Offset	-50	50
ADC Gain	26000	29500
BSI Gain	860	1180
Vbatt Offset	2400	2600
Vbatt Gain	10000	11000
Vchar	57000	63000
lchar	3600	5000

ADC-offset over limits:

Inspect BSI line and components in it (R385, Pull-up resistor R220). If these are OK, change UEM.

BSI Gain over limits:

Inspect BSI line and components in it (R385, Pull-up resistor R220). If these are OK, change UEM.

Vbatt offset and Gain: Inspect Vbatt lines and component in it.

Vchar over limits: Inspect components which are connected Vchar line: V383, F381 and L381

Ichar over limits:

Inspect components which are connected at Vchar line. If those are OK, First change current sense resistor (R191), if calibration is not still successful change UEM.

Calibration can be checked using ADC-readings. Known voltages, currents and resistances are fed and read by ADC-readings, read values and known values can be compared.

ADC-reading

Divided and scaled battery voltage, Charger voltage, Charger current, BSI and Btemp values can be read by this tool. Read values few times before you can be sure that results are accurate.

Reading			
erter names Raw results	Unit results	Unit	
attery Voltage, Divided 1023	5446.00	mV	<u>R</u> ead
attery Voltage, Scaled 1023	5446.00	mV	Deset
harger Voltage 0000	65.00	mV	<u>Hepeat</u>
harger Current 0006	11.00	mA	Read <u>target</u> :
attery Size Indicator 0028	3.40	KOhms	
attery Temperature 0292	28.00	С	
eadset Interconnection 0004	19.00	mV	Samples amount:
pok Interconnection 1001	2758.00	mV	1
ght Sensor 1023	2819.00	mV	
ower Amplifier Temperature 1006	-273.00	С	Repeat interval:
X0 Temperature 1007	-55.00	С	5 💌
esistive Keyboard 1 / Headint2 0847	1773.00	mV	
esistive Keyboard 1 / Auxdet 0739	1548.00	mV	Help
tial Battery Voltage -	5446.00	mV	<u></u>
attery Current -	97.00	mA	
attery Current Fast -	97.00	mΑ	
attery Current Fast -		97.00	97.00 mA 97.00 mA

NOTE: IF Vbatt Scaled and Divided unit results are different default calibration values are used. In this case perform EM-calibration to get full performance of phone.

<u>Reading</u>	Check point	<u>Tolerance</u>
<u>Reading</u>	Check point	<u>Tolerance</u>
Vbatt SCAL_	4.2V	$\pm 25 mV$
Vchar	8.4V	± 40mV
lchar	500mA	± 20mA
BSI	75k	± 1.3kohm
Btemp	273K(47k)	± 5K

Maximum tolerances are:

Backup battery

Symptom of backup battery fault is

Real Time Clock loses the correct time during short main battery removal.

The same symptom can also be seen when the backup battery is empty. About 30 minutes is needed to fully charge the backup battery in the device. NOTE: Backup battery is charged when the phone is powered or when the device is LOCAL or TEST mode.

Always check the backup battery visually for any leakage or any other visual defect.

Check that the backup battery is correctly mounted in the device before closing the cover.

Check with Phoenix that backup battery is OK

Measure the voltage of backup battery

- Normal operation when the voltage is > 2.0V
- Fully charged when the voltage is about 3.2V (because of large internal impedance voltage won't stay above 3.0V a long time after charging is disabled)

Enable backup battery charging (start to charge main battery or boot device to LOCAL or TEST mode)

Measure voltage of backup battery during charging, It should arise if it is not 3.2V, yet.

When the voltage is over 2.0V for sure, check backup battery with Phoenix. -> In not OK then D190 is faulty.

Ensure that the RTC is running.

SIM card

The whole SIM interface locates in two chips UPP_WD2 and UEM. UEM contains the SIM interface logic level shifting. UPP provides SIMClk through UEM to the SIM. SIM interface supports both 3 V and 1.8 V SIMs.

The SIM power up/down sequence is generated in the UEM. This means that the UEM generates the RST signal to the SIM. Also the SIMCardDet signal is connected to UEM. The card detection is taken from the BSI signal, which detects the removal of the battery. Monitoring of the BSI signal is done by a comparator inside UEM. The threshold voltage is calculated from the battery size specifications.

The SIM interface is powered up when the SIMCardDet signal indicates "card in". This signal is derived from the BSI signal. SW tries first to power up the SIM with 1.8 V. If this doesn't succeed power up is repeated with VSIM switched to 3 V.

The data communication between the card and the phone is asynchronous half duplex. The clock supplied to the card is in GSM system 1.083 MHz or 3.25 MHz. The data baudrate is SIM card clock frequency divided by 372 (by default), 64, 32 or 16.

Figure 4: SIM Power Up.

NOKIA

CCS Technical Documentation

Remember to check the two PHOENIX test cases before changing UPP!!!!

"Insert SIM Card" in device display although card is inserted

Audio Troubleshooting

Figure 7: Audio routing window in Phoenix

Microphone

Earpiece

IHF

Headset Troubleshooting

NOKIA

Memory Troubleshooting

Most memory related errors are found through flashing the device, flashing the device is therefore recommended before any of the steps described in this chapter. Check flashing Troubleshooting section first.

There are however a few memory related errors that cannot be found through flashing.

- SDRAM(D312) partially damaged. This can mean that the SDRAM component itself is partially damaged and all the memory locations cannot be successfully read or there is a soldering problem somewhere either under UPP or SDRAM. There is a BB self test for testing SDRAM component quite thoroughly, but the problem is that if SDRAM doesn't function properly one may not be able to run those tests as SDRAM is used during the device boot and selftest cannot be run if the device hasn't booted.
- DEVICE may inform about being "out of memory " more often than it should
- flash1 (D310) or flash 2 (D313) is partially/totally damaged. During flashing the manufacturer, device and revision id's are read, but flashing is done based on id's of the flash0 (D311). This means that one cannot see any error messages displayed on Phoenix window during flashing if flash1 or flash 2 is failing. Id's are however displayed on the Phoenix window and successful read of flash1 id's can be checked from there.

MMC Troubleshooting

NOKIA

CCS Technical Documentation

USB Troubleshooting

NOKIA

VIBRA

There may be three kind of problems concerning vibra; it doesn't rotate at all, it's noisy or it's continuously on. The noisiness is usually caused by the surrounding mechanics when the rotating mass has contact to it.

ZOCUS

UI Troubleshooting

UI Troubleshooting cases

This document describes how the trouble shooting should be done if there is something wrong with the UI function. If the problem is due to the display or keymat PWB the whole UI module should be replaced. However, the earpiece maybe replaced. (see Audio Troubleshooting)

Keymat Backlight

If the keymat backlight is non-functional and the backlight driver voltage is generated correctly, then there is either a problem with the connector or the UI module.

Note: that it is possible for an LED to be non-functional and for all other LEDs to still be working.

Keyboard

If keyboard doesn't work, follow the Troubleshooting flow chart below:

NOKIA

CCS Technical Documentation

Display blank

Backlight does not turn on

FM Radio Troubleshooting

FM Radio component layout

Figure 9: Component placement

Figure 10: Trace layout.

Figure 11: FM radio block layout.

Components C001 and C002 are not shown in the picture. Those components are placed near audio connector X002.

NOKIA

CCS Technical Documentation

🌾 FM Radio			
Power Volume Ogtions 0 %	 100 %		
Tuning-			
Extended Area 95,700 MHz Set Freque	ency Audio mode: Stereo 💌		
JJ	- <u>>> (F3)</u> ○ <u>M</u> anual ⊙ A <u>u</u> tomatic		
Detection Level of Auto Search	1		
Detection level of tuned channels HIGH	100 ms		
Channel Manager			
Active set: <no name=""></no>	Rename Active Set		
	<u>C</u> lear Set		
Channel Name Audio Mode Fre	quency Detection Level RDS		
??? Stereo 100	1300 Detection High off		
<u>R</u> ename Channel <u>A</u> dd New Channel <u>D</u> elete Current Channel Force Re-read			
When radio's power is on left mouse button's click will set given channel, right mouse button's click will simply select the channel. Help			

Figure 12: FM Radio control window.

FM Radio Troubleshooting diagram

Notes to "FM Radio Troubleshooting diagram"

Use 1MHz 1X probe when measuring Audio and clock signals with oscilloscope.

Use active RF probe when measuring frequencies with spectrum analyzer.

Note 1. RF test signal parameters:

- Amplitude, *A*, –67.0 dBm
- Carrier frequency, f_c 98,000 MHz
- Deviation, Δf , 75 kHz

- Modulating frequency f_m , 1,000 kHz (RF generator internal)
- FM stereo, mode R=L, pilot state ON

Diagrams of FM radio signals

Figure 14: Oscilloscope screen shot, Audio output

Signal 1: Audio output from PWB test points J103 and J104, with FM test signal, volume 100%.

Signal 2: Audio output from FM radio pins 22 and 23(same as in C017 and C018), with FM test signal

Figure 16: FM frequency from FM radio pin 37, the other end of L500, with FM test signal

Figure 17: VCO frequency from FM radio pins 3 and 4, the other ends of V500 and V501, with FM test signal

NOKIA

CCS Technical Documentation

RF Troubleshooting

Abbreviations in fault finding charts

Base band
GSM1800
GSM1900
Extended GSM900
Electro Static Discharge
General Packed Radio Service
High Speed Circuit Switched Data
Local Oscillator
Power Amplifier
Printed Wired Board
Phase Locked Loop
Radio Frequency
Receiver
Spectrum analyzer
Transmitter
Ultra High Frequency
Voltage controlled oscillator
Very High Frequency

Introduction

Two types of measurements have to be done for repair of the phone boards:

- RF measurements shall be done using a Spectrum Analyzer together with a high-frequency probe. (Note, that signal will be significantly attenuated). Correct attenuation can be checked by using a "good" phone board, for example.
- LF (Low frequency) and DC measurements shall be done with a an oscilloscope together with an 10:1 probe.

Always make sure that the measurement set-up is calibrated when measuring RF parameters at the RF connector. Remember to include the correct losses in the module repair jig and the connecting cable when realigning the phone.

Most RF semiconductors are static discharge sensitive. ESD protection must be taken into account during repair (ground straps and ESD soldering irons).

Mjoelner RF ASIC is moisture sensitive. Therefore, Mjoelner RF ASIC must be pre-baked prior to soldering.

Rx calibration done via Phoenix software is temperature sensitive because of calibration of 26 MHz reference oscillator (VCXO). According to Mjoelner specification ambient temperature has to be in a range from 22°C to 36°C.

Apart from key-components described in this document there are a lot of discrete components (resistors, inductors and capacitors) for which Troubleshooting is done by checking if soldering of the component is done properly and checking if the component is missing from PWB. Capacitors can be checked for short-circuiting and resistors for value by means of an ohm-meter, but be aware in-circuit measurements should be evaluated carefully.

In the following both, the name EGSM and EGSM900 will be used for the low band. DCS or PCN and GSM1800 will be used for the mid band. PCS and GSM1900 will be used for the high band.

RF Key component placement

Figure 1: RF key component placement

Reference number	Name	Reference number	Name
N601	Mjoelner RF ASIC	X602	RF Connector
B601	26 MHz Xtal	L801	Directional Coupler
Z602	GSM1800 RX SAW	V801	Detector Diode
Z603	GSM1900 RX SAW	Z601	Antenna switch
Z604	EGSM RX SAW filter	N801	Power Amplifier
Z701	EGSM TX SAW filter		
T701	GSM1800/GSM1900 TX Balun		
V802	EGSM Pre-amplifier		
G701	3.7 GHz VCO		
T702	VCO Balun		

RF Measurement points

RF Supply points

Figure 2: RF Supply points inside Mjoelner can

RF power supplies are generated in the UEM and can be measured either in the Mjoelner can or in the baseband can. Arrows mark the measurement points inside the pictures.

Measurement points in the receiver

Measurement points are indicated on the picture below.

Figure 3: Rx I and Q measurement points

Figure 4: Rx measurement points at Rx SAW filters and Mjoelner RF ASIC

Measurement points in the transmitter

Measurement points are shown in the picture below,

Figure 5: Tx measurement points inside PA can (bottom side of PWB)

Figure 6: Tx measurement points on the top side of PWB

Figure 7: Tx measurement points inside Mjoelner can

RF in general

The RF part is a triple-band direct conversion transceiver. Using direct conversion no intermediate frequencies are used for up- or down- conversion.

The VCO is set to either twice or four times (depending on the band used) the wanted RX or TX frequency. The VCO frequency is divided by either 2 or 4 and fed to the mixers (down-conversion) or modulators (up-conversion). Up- or down- conversion is done in one step, directly between RF frequency and DC. All up and down-conversion takes place in the RF ASIC named Mjoelner (N601).

Mjoelner RF ASIC also contains PLL and LNAs for all used bands. A DC control section is included in to power and/or control EGSM TX buffer, detector and antenna switch. The Mjoelner RF ASIC is controlled via a serial bus.

Mjoelner RF ASIC contains an integrated VCXO which uses an external 26 MHz Xtal. No analogue AFC signal is needed. AFC is done via the serial interface of Mjoelner.

The interface between Mjoelner RF ASIC, UPP and Bluetooth uses a 26 MHz reference clock. An external 26 MHz reference clock buffer is used to drive Bluetooth module.

The RF supports HSCSD (High Speed Circuit Switched Data) and GPRS (General Packed Radio Service), meaning multi-slot operation, this will not require special equipment or procedures in repair situations.

Figure 8: RF frequency plan

Figure 9: RF Block diagram

Copyright © 2003 Nokia Corporation Company Confidential

RF Power Supply Configuration

All power supplies for the RF Unit are generated in the UEM IC (D190). All RF supplies can be checked either in Mjoelner can or in BB can.

The power supply configuration used is shown in the block diagram below. Values of voltages are given as nominal outputs of UEM. Currents are typical values.

Figure 10: RF Power distribution diagram

Receiver

Gener	eneral instructions for RX Troubleshooting Connect the phone to a PC with DAU-9S cable and dongle and follow the following instructions:			
Measu	asuring RX I/Q signals using RSSI reading Start Phoenix Service Software			
	Log in with your user ID.			
	Select	File	[Alt-F]	
		Manage Connections	[M]	
		FBUS	Apply	
		Close window		
	Open the FBUS connection			
Select Scar		Scan Product	Ctrl-R	
	Wait until phone information shows in the lower right corner of the screen.			
	Set operating mode to local mode			
	Select	Testing	alt-S	
		RF Controls	R	
	Wait until the	RF Controls window po	ps up	
	Select	Band Active unit Operation mode RX/TX Channel	GSM 900 or GMS 1800 or GSM 1900 RX Burst 37 or 700 or 661	
	Select	Testing RSSI reading	alt-S g	

The setup should now look like this:

16 Phoenix		_ 🗆 🗵
File Edit Product Flashing Testing Tuning Tools Window Help		
🗋 🖆 🔚 📗 Operating mode: 🛛 Local 💽 Read 🔄 Band: GSM 9	300 💌 🗍 Monitor Channel: 🛐 942.400000	
Operation Mode: Burst Rx/Tx Channel: 37 942.400000		
RF Controls	🔀 RSSI Reading	<u>- </u>
Common GSM RF Control Values Active Unit: Rx	Measuring mode Sum vector C Q branch C 1 branch C 1 branch	de ontinuous nce
RX Control Values Monitor Channet: 37 942.400000 AGC: T4: FEG_ON + 24 dB + const_BB_gain	RSSI level: dBm Start Einish Glose	<u>H</u> elp
TX Control Values Edge: Off Y Tx Data Type: All 1 Y Tx PA Mode: High Y Tx Power Level: 5 Y		
<u></u> lose <u>Help</u>		
Ready V 2.50 , 13-	-06-03 , NEM-4 , (c) NMP.	FBUS COM1 //

Apply a signal with a frequency of

EGSM : 942.467 MHz (channel 37 + 67.710kHz offset) GSM1800: 1842.867 MHz (channel 700 + 67.710kHz offset) GSM1900: 1960.067 MHz (channel 661 + 67.710kHz offset)

and a power level of -80dBm to the RF-connector (remember to compensate for cable attenuation).

In RSSI reading click on Read now.

Measuring RX performance using SNR measurement

Start Phoenix Service Software

Open the FBUS connection

Select Scan Product Ctrl-R

Wait until phone information is shown in the lower right corner of the screen.

Set operating mode to local mode

Select Testing alt-S RF Controls R

Wait until the RF Controls window pops up

Select Band GSM 900 or GMS1800 or GSM1900 Active unit RX Operation mode Burst **RX/TX** Channel 37 or 700 or 661 Select Testing alt-S **SNR** Measurement Ν select Fast SNR Radio Button

The setup should now look like this:

Phoenix		
Content of the stand of th	900 🗾 Monitor Channel: 37 942.400000 Operation	Mode: Burst 💌
Rx/Tx Channel: 37 942.400000		Active Unit: 🛛 💌
🕼 RF Controls	SNR Measurement	×
Common GSM RF Control Values Active Unit: Rx Rx/Tx Channet: 37 942,400000 Band: GSM 900 AFC: 3164 Operation Mode: Burst RX Control Values Monitor Channet: 37 942,400000 AGC: 14. FEG_ON + 24 dB + const_BB_gain TX Control Values	Measurement results Signal Clipping Distance: II - Q I: Sensitivity: Noise Clipping Distance: II - Q I:	Measurement mode C Signal Noise C Both C East SNR
Edge: Off Y Tx Data Type: All 1 Y Tx PA Mode: High Y Tx Power Level: 5 Y 	Signal I Signal Q Noise I 1	Noise Q
	8 9 9 Clos	e <u>H</u> elp
Ready	V 2.50 , 13-06-03 , NEM-4 , (c) NMP.	FBUS COM1

Choose respective band (EGSM900, GSM1800, GSM1900)

Press Start. A window pops up, e.g. for EGSM900 band:

Frequency: Level:	942.467710 MHz -92.0 dBm (+ attenuations)	

Connect an external signal generator to the RF connector of the phone and set the generator as told in the window, taking care for external cable losses. NOKIA

Press ok and the window closes.

	GSM1900 >18dB
	GSM1800 >18dB
Read the SNR result. SNR should be:	EGM900 >20dB

Measuring frontend power levels using Spectrum analyzer

Spectrum Analyzer (SA) level values depend on the probe type and should be vali- dated using a good sample. The levels that are given here are measured using a resistive probe (500hm semi-rigid cable).			
Start Phoenix Service Software			
Open the FBUS connection			
Select	Scan Product	Ctrl-R	
Wait until phone information shows in the lower right corner of the screen.			
Set operating mode to local mode			
Select	Testing	alt-S	
	RF Controls	5	
Wait until the RF Controls window pops up			
Select	Band	GSM 900 or GMS1800 or GSM1900	
	Active unit	RX	
	Operation mode	Continuous	
	RX/TX Channel	37 or 700 or 661	

Please refer to the fault finding chart for proper levels at different test points.

Measuring analogue RX I/Q signal voltages using Oscilloscope

Measuring with an oscilloscope on "RXIINN" or "RXQINN" is recommended only if RSSI reading does not provide enough information. Use testpoints J606–J609. Input level = - 80dBm

Start Phoenix Service Software

Select Scan Product Ctrl-R

Wait until phone information shows in the lower right corner of the screen.

Set operating mode to local mode

	Operation mode	continuous		
	Active unit	RX		
Select	Band	GSM 900 or GMS1800 or GSM1900		
Wait until the RF Controls window pops up				
Sciect	RF Controls	R		
Select	Testing	alt-S		

37 or 700 or 661

14

Following picture should be seen on a working EGSM receiver:

RX/TX Channel

AGC

Frequency 67kHz

Receiver fault finding

Set up Phoenix as if doing RSSI measurements.

Ascertain which Rx band is faulty.

Refer to Rx fault finding flow chart.

Set signal generator frequency to 942.47MHz for EGSM, 1842.87MHz for DCS 1800 or 1960.07MHz for PCS 1900.

Set signal generator amplitude to -60dBm.

Note: That checking the RF inputs to SAW filters Z602, Z603 & Z604 will be extremely difficult with

the Mjoelner Can Shield in place. If this is impossible to get to, try checking the test points shown on the antenna switch Z601.

Rx Signal paths

The signal paths of the receiver are shown in following block diagram. Note that the picture shows EGSM900 (EGSM) receiver (top), GSM1900 (PCS) receiver (middle) and GSM1800 (DCS/PCN) receiver (down).

Antenna switch (RX/TX Switch)

From the antenna-pad (X600) the RF signal is fed through the antenna connector (X602) to the RX/TX switch (Z601). The antenna connector represents a mechanical switch between internal antenna and external antenna feed.

The RX/TX switch (Z601) works as diplexer. EGSM900 input signals pass to GSM_Rx output. GSM1800 input signals pass to PCN_Rx output or PCS_Rx output, depending on the control signal VANTH (Cont2).

From RX1-GSM output of the antenna switch the RX signal is routed in the inner layers of the PWB to the EGSM900 SAW filter (Z604). From RX2-DCS output the GSM1800 RX signal is routed to the GSM1800 SAW filter (Z602). From RX3-PCS output the RX GSM1900 signal is routed to the GSM1900 SAW filter (Z603).
The RX/TX switch with routed lines has following typical insertion losses: 1.3dB@EGSM900, 1.6dB@GSM1800 and 1.6dB@GFSM1900.

Figure 11: Antenna switch Rx test points

Front-end

The RX front end includes three SAW filters (EGSM900 (Z604), GSM1800 (Z602), GSM1900 (Z603)). Each of the SAW filters is matched with a differential matching circuit (LC-type) to the corresponding LNA input of Mjoelner RF ASIC (N601). The SAW filters provide out-of-band blocking immunity, the integrated LNAs provide the front-end gains. Each of the SAW filters has a single-ended input and a balanced output which provides a balanced RX signal to the corresponding input of the Mjoelner RF ASIC.

The SAW filters have maximum insertion losses of

3.5dB@EGSM900, 4.0dB@GSM1800 and 4.0dB@GSM1900.

RX paths of Mjoelner RF ASIC

The balanced RX signal is amplified by the integrated LNA and the subsequent Pre-Gain stage. After amplification the RX signal is down-converted with a LO signal coming from the local oscillator.

The RX paths of Mjoelner RF ASIC consist of following building blocks:

- Separate LNAs for each of the three bands: EGSM900, GSM1800 and GSM1900.
- Two PREGAIN amplifiers, one for EGSM900 and one common for GSM1800 and GSM1900.
- Two passive I/Q mixers (MIX), one for EGSM900 and one common for GSM1800 and GSM1900.

The resulting BB signal is further amplified in the BB chain. For that no external circuitry is required:

- Base band amplifiers (BBAMP1). That amplifiers implement the initial channel filtering.
- Low pass filters (LPF1).
- DC compensation / AGC amplifiers (DCN1). They implement gain steps from 0dB to 24dB in 6dB steps.
- Attenuators (AGC). They implement gain steps from -48dB to 0dB in 6dB steps, yielding a total gain range of 72dB together with DCN1.
- Bi-quad filters (LPF2).
- DC compensation amplifiers (DCN2).

The differential base band outputs are internally DC coupled and can be connected directly to the ADC inputs of the RF converter chip. The common mode level is set equal to the VBEXT reference voltage.

Transmitter

General instructions for EGSM TX Troubleshooting

Apply a RF-cable to the RF-connector to allow the transmitted signal to act as normal. RF-cable should be connected to measurement equipment (GSM Test equipment, Power-meter, Spectrum Analyzer, or similar). Be sure to use at least a 10-dB attenuator, otherwise the results may be incorrect.

Connect the phone to a PC with DAU-9S cable and dongle and follow the following instructions:

Set the mode switch to 'Local' and connect the phone to a power supply (3.6V). When using an MJS-80 module jig, a 4.2V supply is needed.

Open Phoenix and log in with your user ID.

Select File [Alt-F] -> Manage Connections [M] -> FBUS -> Apply -> Close window.

Select File -> Scan Product [Ctrl-R].

When the product has been found, the phone SW version can be read from the lower edge of the Phoenix screen.

If the Operation is not shown, click Read button to see that Local mode has been selected. Select Testing [Alt-S] -> RF controls [R].

Before choosing the band and Tx as Active Unit, and if the spectrum analyser is used, make sure that the spectrum analyser reference level is higher than the expected TX power.

Use the automatically selected channel.

Set Operation Mode to 'Burst'.

Choose the Power level you want the phone to operate at.

Set spectrum analyzer centre frequency, 897.4MHz for EGSM, 1747.8MHz for PCN 1800 & 1880MHz PCS 1900 and set Span to 1MHz.

Company Confidential

Set Amplitude of spectrum analyzer reference level to one that you can clearly see the transmit pulse according to the kind of test probe you are using.

Diagnose as per fault finding flow chart.

Note:Be careful when selecting the operation mode, if 'Continuous' is selected prolonged transmission may damage the phone.

A Manage Connections	
Priority list:	Apply
NO CONNECTION	Reyert
	<u>A</u> dd
	<u></u> <u>E</u> dit
	<u> </u>
	Help

16 Phoenia	8							
<u>File</u> <u>E</u> dit	Product	Flashing	Testing	T <u>u</u> ning	Tools	<u>W</u> indow	<u>H</u> elp	
New Prof	ile				Rea	a (
Open Pro	file					_	_	
Save Pro	file							
Save Pro	file <u>A</u> s							
<u>M</u> anage (Connectio	ns						
Scan <u>P</u> ro	duct	Ctrl-F						
Open Pro	duct							
Close Pro	duct							
E <u>x</u> it								
Scan the co	nnected p	product				1		V 2.22, 28-04-03, NEM-4, (c) NMP.

🌃 Phoenix						
<u>File Edit Prod</u>	luct Flashing	Testing	Tuning	Tools	Window	Help
	Operating mo	ide: Loca	l 💌	<u>R</u> ea	d	

<u>File E</u> dit	Product	Flashing	Testing	Tuning	Tools	Window	Help
		perating mc	ADC R Audio I Blueto Display Factor EM Ra Keybo MM <u>C</u> c	eading Routing a oth <u>L</u> OCA y <u>S</u> ettings dio ard Test control	nd Test LS	Signals	
			RSSIF Self Te SIM Co SIM-Lo S <u>N</u> R M Vibra C	Reading asts antrol ack Statu: feasurem Control	s ent		

🌃 Phoenix	
<u>File Edit Product Flashing Testing</u>	T <u>u</u> ning <u>I</u> ools <u>W</u> indow <u>H</u> elp
📙 🗅 😂 🔚 📙 Operating mode: 🛛 Loca	∎
K RF Controls	
Band: GSM 900 💌	Tx PA Mode: Free 💌
Active Unit: Tx 💌	Tx Power Level: 19 💌
Operation Mo	Tx Data Type: 🛛 🕅 💌
Rx/Tx Channel: 37 897.400000	Edge: 🛛 🖞 📉
Monitor Channel: 37 942.400000	
AGC: 14: FEG_ON + 24 dB + const_BB	ilgain 💌
AFC: 3157	Help

🌃 Phoenix	
<u>File Edit Product Flashing Testing Tu</u>	ning <u>T</u> ools <u>W</u> indow <u>H</u> elp
📄 🗃 🚅 📕 🗍 Operating mode: 🛛 Local	▼ <u>R</u> ead
KRF Controls	
Band: GSM 900 💌	Tx PA Mode: Free 💌
Active Unit: Tx 💌	Tx Power Levet 19
Operation Mode: Burst	Tx Data Type: 5
Rx/Tx Channel: 37 897.400000	Edge: 0# 789
Monitor Channel: 37 942:400000	10
AGC: 14, FEG_ON + 24 dB + const_BB_g	ain 💌 13 14
AFC: 3157	15 16 Help
<u> </u>	
	base

Figure 12: Mjoelner Can Tx Test Points

[This page intentionally left blank.]

Figure 1: EGSM TX Can Test Points

VTXB_900 (EGSM V802 Pre-Amp Biasing Waveform)

EGSM Transmit Waveform (Burst, Power Level 19)

Phone drew 140mA during Burst operation

Was drawing over 600mA during continuous operation

TX Path of the transmitted EGSM900 signal

For easy error tracing it is important to know the signal path of the EGSM900 transmitter. The components can be grouped into blocks and drawn as shown below. Note that the following picture shows both EGSM900 transmitter (bottom) and GSM1800/ GSM1900 transmitter (top).

EGSM900 TX path of Mjoelner RF ASIC

The balanced TX IQ signal is provided by the base band and is coming to the Mjoelner RF ASIC. The TX paths of the Mjoelner RF ASIC include mainly two RF modulators for upconversion of the base band signals, one for EGSM900 and one common for GSM1800/ GSM1900. The base band signal is modulated with the LO signal corresponding to the wanted TX channel. The GSM TX output of the Mjoelner RF ASIC is a balanced signal.

From the output of the Mjoelner RFASIC the signal is fed through the EGSM TX SAW filter (balanced to single-ended), a 900MHz buffer, and a 5-db pad to the PA EGSM input.

EGSM900 TX path of the Power Amplifier (PA)

The PA EGSM900 part has a maximum output power of app. 35dBm. Voltage supply is coming directly from the Battery connectors.

The EGSM900 output is controlled by the power control loop. From the EGSM900 output of the PA the RF signal is fed through the directional coupler (one of the power control loop components) to the antenna switch.

Antenna Switch (TX/RX switch)

The antenna Switch works as a diplexer for the RX and TX signals. Moreover, it suppresses the TX harmonics generated by the PA. The antenna switch is controlled by the Mjoelner RF ASIC using the control signals CONT1, CONT2 and CONT3. The following table shows the possible different states.

CONT1 [Volt]	CONT2 [Volt]	CONT3 [Volt]	EGSM Rx	DCS Rx	PCS Rx	EGSM Tx	DCS/PCS Tx
0	0	0	Х				
0	0	0		Х			
0	0	2.7				Х	
0	2.7	0			Х		
2.7	0	0					Х

Figure 2: Antenna Switch Test Points

EGSM Tx fault finding flow chart

The first flow diagram assumes the following:

- Phoenix has been set up as shown on page 24 (the Tx power level may be increased using Phoenix if it makes the Tx pulse easier to see).
- Relevant components have been visually inspected for orientation, placement, etc.
- The transmit signal has been checked with a spectrum analyzer at RF connector, X602 and was found to be too low or non-existent.
- The VCO is running correctly.

NOKIA

CCS Technical Documentation

- The power amplifier is getting a correct VBATRF supply via L805 & L809.
- Mjoelner's supply voltages VR1A, VR2, VR3, VR4, VR5 & VR7 are all working correctly.

General instructions for GSM1800/1900 TX Troubleshooting

Apply an RF-cable to the RF-connector to allow the transmitted signal to act as normal. RF-cable should be connected to measurement equipment (GSM Test equipment, Power-meter, Spectrum Analyzer, or similar).

DCS 1800/PCS 1900 Tx fault finding flow chart

The following diagram assumes the following:

- Phoenix has been set up as shown previously (selecting DCS 1800 in the RF control box).
- Relevant components have been visually inspected for orientation, placement etc.
- The Transmit Signal has been checked with a Spectrum Analyzer at the RF connector, X602 and was found to be low or non-existent.
- The VCO is running correctly.
- The Power Amplifier is getting a correct VBATRF supply via L805 & L809.
- Mjoelner's supply voltages VR1A, VR2, VR3, VR4, VR5 & VR7 are all working correctly.

Path of the transmitted GSM1800/1900 signal

For easy error tracking it is important to know the signal path of the GSM1800/ GSM1900 transmitter. The components can be grouped into blocks and drawn as shown below. Note that the picture shows both EGSM transmitter (bottom) and GSM1800/ GSM1900 transmitter (top).

The path of Mjoelner RF ASIC

The balanced TX IQ signal from base band is coming to Mjoelner RF ASIC. The GSM1900 path includes an common RF modulator for GSM1800 and GSM1900. The BB signal is up-converted with the LO signal corresponding to the wanted TX channel. The GSM1800/GSM1900 TX output of Mjoelner is a balanced signal.

From the output of Mjoelner the signal is fed through the Balun T701 (Balanced to single ended) and an 3 dB pad to the PA GSM1800/1900 input.

The path of the PA

The GSM1800/GSM1900 part of the PA has a maximum output of app. 33dBm. The supply is coming directly from the Battery connectors.

The output is controlled by the power control loop. From the output of the PA the signal

goes through the directional coupler (one of the power control loop components) to the Antenna Switch.

Antenna Switch

The Antenna Switch works as a diplexer between RX and TX Bands. Moreover, it partly suppresses the harmonics generated by the PA. Mjoelner RF ASIC controls the antenna switch by three voltages CONT1, CONT2 and CONT3. The following table shows the different states.

CONT1 [Volt]	CONT2 [Volt]	CONT3 [Volt]	EGSM Rx	DCS Rx	PCS Rx	EGSM Tx	DCS/PCS Tx
0	0	0	Х				
0	0	0		Х			
0	0	2.7				Х	
0	2.7	0			Х		
2.7	0	0					Х

Fault finding chart for GSM1800/GSM1900 transmitter

If the Tx output is too high, then it is most likely that there is a problem within the Power Control loop.

Mjoelner is receiving the Reference TXC from Baseband and not getting any feedback

from DET to compare with TXC. The result is that Mjoelner drives VDP_900/VPD_1800 high to try and increase the power output so that the DET signal is matching TXC. With a break in the Power Control loop, the DET signal never reaches Mjoelner so it assumes that the PA is not outputting enough power so it tries to compensate by increasing the gain.

When checking the Power Control loop, make sure that (C803) is pulsing at 2.8V Peak to Peak. Check the DET pulse at Mjoelner input on R706.

This case is the same for EGSM, DCS1800 & DCS1900.

NEM-4 Synthesizer

There is only one PLL synthesizer generating frequencies for both Rx and Tx for all three bands (EGSM900, GSM1800 and GSM1900). VCO frequency is divided by 2 or by 4 in Mjoelner depending on which band is active.

General instructions for Synthesizer Troubleshooting

Connect the phone to a PC with DAU-9P cable and dongle and follow these instructions:

Start Phoenix Service Software (dongle needed):

Open FBUS connection

NOKIA

CCS Technical Documentation

Select		Scan Product	Ctrl-R
	or	File	Alt-F
		Scan Product	Р

Wait until phone information shows in the lower right corner of the screen.

Set operating mode to local mode.

Start RF Control window:

Select	Testing	Alt-S
	RF Controls	R

Wait until the RF Controls window pops up

Set the synthesizer to the following mode:

Select	Band	GSM 900
	Active unit	RX
	Operation mode	Continuous
	RX/TX Channel	37

The setup should now look like this:

🌃 Phoenix		. 🗆 🗙
File Edit Product Flashing	Testing Tuning Tools Window Help	
📙 🗅 🥔 🔚 🗍 Operating m	de: Local 💌 Read	
KRF Controls		
Common GSM RF Control V	slues	
Active Unit:	Rx/Tx Channel: 37 942.400000	
Band: GSM 900	AFC: 3164	
Operation Mode: Burst		
RX Control Values		
Monitor Channet: 37 9	42.400000	
AGC: 14: FEG_ON + 24 d	+ const_BB_gain	
TX Control Values		
Edge: Off 🔄	Tx Data Type: 🗚 1	
Tx PA Mode: High 💌	Tx Power Level: 5	
\$		8=
<u> </u>		
Ready	V 2,50 , 13-06-03 , NEM-4 , (c) NMP.	- <i>11.</i>

Since VCO chamber is completely shielded, it is not easy to measure frequency of 3769.6MHz at the output of the VCO (G701) using a resistive probe and a spectrum analyzer. It is possible to measure tuning voltage at charge pump output (C710) easily. For $f_{VCO} = 3769.6MHz$ the tuning voltage should be $2.3V_{DC} ... 2.8V_{DC}$ (Tuning sensitivity of VCO is 240MHz/V typ.).

Figure 3: PLL Synthesizer Test Points

If this is not the case, then go to Fault finding chart in this document for Troubleshooting.

Figure 4: Mjoelner Can Test Points

26 MHz reference oscillator (VCXO)

The 26 MHz reference oscillator (VCXO) is part of Mjoelner RF-ASIC (N601). It needs only an external 26 MHz Xtal (B601) as external circuitry.

The reference oscillator has three functions:

- Reference frequency for the PLL synthesizer.
- System clock for BB (RFCLK_I = 26 MHz).
- 26 MHz Reference clock (LPRFCLK_I) for Bluetooth Module (N430) via buffer V601.

For an error free initial synchronization, the 26MHz frequency of the VCXO must be accurate enough. Therefore, a **VCXO-calibration (cal)** value is written via the serial Bus into the RefOSCCAL register of Mjoelner and an additional bit in the RefOSCCntl register of the Mjoelner. That is necessary for the rough calibration of the VCXO.

The VCXO is fine tuned by programming the AFC value via the serial bus of Mjoelner. The necessary AFC value is written into the RefOSCAFC register in Mjoelner.

VCO

The VCO is able to generate frequencies in the range from 3420MHz to 3980MHz when PLL is in function. The frequency of the VCO signal is divided by 2 or by 4 in Mjoelner RF-ASIC. So it is possible to generate the frequency of all channels in EGSM900, GSM1800 and GSM1900 (both RX and TX). Frequency of the VCO is controlled by DC voltage (Vc) coming from the PLL loop filter. Range of Vc when PLL is in function is 0.7V– 3.8V. Typical tuning sensitivity of the VCO is 240MHz/V. Even if PLL is not working (Vc out of range) there is a frequency at the output of the VCO, which is between 3 and 4 GHz (if the VCO itself is ok).

It is important to say that power supply for VCXO (VR3) is only switched 'OFF' in the socalled 'Deep Sleep Mode' and power supply for VCO (G701 VR7) is switched 'OFF' in socalled 'Sleep Mode'.

JOKIA

PLL Block diagram

PLL power supply

Loop Filter

VCO and power supply

26MHz Bluetooth buffer

Frequency lists

EGSM900

975 880.2 925.4 3320.8 11 880.4 935.4 3561.6 3744.6 64 902.8 947.8 3611.2 3771.2 977 880.6 925.4 3522.4 3702.2 4 880.6 356.6 3662.2 3742.2 66 003.2 446.2 3612.2 3792.2 970 880.6 025.6 3752.4 4 880.6 3563.5 3742.2 66 003.2 446.2 3614.3 3794.4 880.8 922.2 3522.4 3772.4 1 966.4 3666.5 3745.6 68 933.6 446.6 3616.3 3766.5 982.8 926.6 3676.5 3766.8 1 892.0 376.0 1366.0 3746.4 77 944.4 944.6 4861.3 3776.3 3776.2 1862.6 3776.8 176.0 716.4 4964.4 4864.3 3764.3 3764.4 77 945.4 4848.3 4878.3 37782.3 3776.2 77 <t< th=""><th>СН</th><th>ТΧ</th><th>RX</th><th>VCO TX</th><th>VCO RX</th><th>СН</th><th>ТΧ</th><th>RX</th><th>VCO TX</th><th>VCO RX</th><th>СН</th><th>ТΧ</th><th>RX</th><th>VCO TX</th><th>VCO RX</th></t<>	СН	ТΧ	RX	VCO TX	VCO RX	СН	ТΧ	RX	VCO TX	VCO RX	СН	ТΧ	RX	VCO TX	VCO RX
1976 880.4 925.4 352.4 370.4 380.6 935.6 3562.4 374.2 66 903.2 948.0 937.8 377.8 960.0 925.8 352.2 373.2 4 890.6 935.8 3562.3 374.2 66 903.2 948.0 948.0 937.8 377.8 97.8 97.0 981.0 920.0 352.4 377.4 881.0 936.0 3564.0 3744.0 67.9 941.0 942.6 937.6 378.6 97.4 881.6 920.8 948.8 937.6 376.6 374.4 704.4 942.6 376.7 377.7 981.8 936.8 937.6 376.8 374.4 704.4 949.2 361.6 376.8 374.4 704.4 949.2 361.6 376.8 377.4 375.7 377.2 719.0 942.3 361.6 376.8 377.4 375.7 377.4 376.7 377.4 376.7 377.4 376.7 377.4 376.7 377.4 376.7 377.4	975	880.2	925.2	3520.8	3700.8	1	890.2	935.2	3560.8	3740.8	63	902.6	947.6	3610.4	3790.4
977 880.6 925.6 352.2 3772.2 880.8 935.6 3562.3 3742.2 66 903.0 948.0 948.7 970.8 970 881.0 926.3 3524.0 3774.0 6 881.1 936.0 3564.0 3744.8 68 903.6 446.2 361.6 376.4 980 881.4 926.2 3524.0 3774.8 6 881.4 680.6 376.4 144.4 789.4 646.6 376.6 376.6 7 660.6 376.6 7 660.6 376.6 376.7 376	976	880.4	925.4	3521.6	3701.6	2	890.4	935.4	3561.6	3741.6	64	902.8	947.8	3611.2	3791.2
977 880.8 925.8 352.2 372.3 14 890.0 356.4 374.4 66 903.2 944.2 361.4 379.4 980 881.2 926.0 352.4 3704.8 6 891.4 364.4 374.4 66 903.6 948.6 361.4 379.4 981 814.9 926.4 352.6.4 3706.4 8 891.6 366.6 376.6.6 900.0 944.2 3616.0 3760.0 983 818.1 926.8 377.0 370.7 2 981.8 368.8 77.0 376.8 374.4 79.4 449.2 3616.0 3760.0 985 822.0 927.2 352.8 370.8 377.0 375.0	977	880.6	925.6	3522.4	3702.4	3	890.6	935.6	3562.4	3742.4	65	903.0	948.0	3612.0	3792.0
970 881.0 226.2 3524.0 3704.0 6 891.2 936.2 3564.8 3744.8 66 903.6 948.4 361.5 3798.6 980 881.4 226.2 3524.8 3706.6 7 891.4 936.6 5566.4 3746.6 69 903.8 948.6 361.2 3796.2 3786.0 3890.0 386.0 386.0 3786.0 3786.0 3786.0 3786.0 3890.0	978	880.8	925.8	3523.2	3703.2	4	890.8	935.8	3563.2	3743.2	66	903.2	948.2	3612.8	3792.8
980 881.2 292.2 352.4 374.8 68 903.6 946.8 361.4 374.6 69 903.6 946.8 361.4 374.5 69 903.8 948.8 361.5 3775.2 3775.2 3775.2 3775.2 3775.2 3775.2 3775.2 3776.3 3748.8 71 904.4 944.4 647.6 3776.6 3776.6 3776.4 3778.8 3778.3 3774.3 3789.8 3774.3 3789.4 3774.9 3784.8 71 904.4 944.4 647.6 3776.4 3779.0 3768.3 3776.4 75 905.9 950.0 350.0 380.0 377.2 3775.4 77 905.9 950.0 350.0 330.0 336.8 3377.2 377.8 77 905.4 950.0 350.0 330.0 3375.2 377.0 77 905.4 950.0 350.0 330.0 3375.2 377.0 77 905.4 950.4 360.4 360.4 360.4 360.4 360.4 360	979	881.0	926.0	3524.0	3704.0	5	891.0	936.0	3564.0	3744.0	67	903.4	948.4	3613.6	3793.6
981 881.4 924.6 352.6 370.5 7 891.4 930.6 356.5 374.6 7 991.0 981.6 930.6 356.6 374.6 7 991.0 981.6 330.6 3567.2 374.2 7 904.2 942.2 616.3 3796.6 984 882.0 927.0 3528.0 3708.0 1 892.2 937.0 3588.0 3748.0 7 944.4 944.4 3616.3 3796.6 986 882.2 927.2 3528.0 3708.0 1 892.0 3771.4 3750.6 750.0 950.0 960.0<	980	881.2	926.2	3524.8	3704.8	6	891.2	936.2	3564.8	3744.8	68	903.6	948.6	3614.4	3794.4
982 881.6 926.6 3526.4 3706.4 8 891.6 936.6 3567.2 3742.2 71 904.0 940.0 940.0 940.0 940.4 944.2 944.4 944.7 361.6 3796.8 984 882.0 927.2 3528.8 3708.8 3794.6 74 904.4 944.4 944.4 374.4 3794.8 73 904.6 940.4 944.4 374.4 3794.8 73 906.4 964.0 3810.2 3771.2 3756.7 77 905.4 950.0	981	881.4	926.4	3525.6	3705.6	7	891.4	936.4	3565.6	3745.6	69	903.8	948.8	3615.2	3795.2
983 881.8 926.8 3527.2 3707.2 9 891.8 930.0 271.0 352.0 3708.0 71 904.2 947.0 358.8 3748.8 73 904.6 940.4 941.7 3797.6 3797.6 3799.6 3799.2 3788.8 3748.8 73 904.6 940.4 961.7 3779.2 379.0 74 904.6 940.4 961.7 3779.2 379.0 75 905.0 950.0 950.0 950.0 950.0 980.0 380.0 377.0 377.0 77 905.4 960.4 961.4 961.4 981.4 383.8 375.8 77 905.6 950.6	982	881.6	926.6	3526.4	3706.4	8	891.6	936.6	3566.4	3746.4	70	904.0	949.0	3616.0	3796.0
984 882.0 927.0 3528.0 3708.0 10 992.0 937.0 3568.0 3748.6 77.9 904.6 949.4 3617.6 3797.6 986 882.2 927.2 3528.8 3708.8 11 892.6 377.0 475.0 475.0 475.0 490.8 3619.2 3799.2 987 852.6 927.6 3550.4 371.0 15 893.0 375.0 475.0 490.2 3620.0 3800.0 989 883.0 928.0 352.0 371.2 17 893.4 393.0 375.2 179.0 905.8 990.2 362.0 3800.2 991 883.4 928.4 353.4 371.4 18 893.8 387.5 375.6 806.0 961.3 362.4 3804.8 992 883.6 928.6 353.6 371.6 21 894.2 992.2 357.6 806.0 961.3 362.4 3804.8 397.6 82.0 966.4 951.3	983	881.8	926.8	3527.2	3707.2	9	891.8	936.8	3567.2	3747.2	71	904.2	949.2	3616.8	3796.8
986 882.2 927.2 3568.8 374.8 73 904.6 949.6 3611.2 3798.4 986 882.4 927.4 3550.4 3710.4 13 892.6 937.6 3570.4 3760.6 740.6 740.4 75 905.0 950.0 3620.0 3800.0 988 982.0 927.8 3531.2 3711.2 16 893.0 936.0 3752.8 776 905.6 960.4 3622.4 3800.4 990 883.6 928.2 353.2 3712.0 16 893.0 936.6 3574.4 3754.4 806.6 3622.4 3800.4 991 883.4 928.3 3573.5 3716.0 20 894.0 930.6 3576.0 376.0 806.6 951.0 362.4 3804.8 994 884.0 929.0 3556.0 3716.6 21 994.8 395.2 3716.2 3789.4 396.6 871.4 362.6 3304.4 3807.4 3789.4 9	984	882.0	927.0	3528.0	3708.0	10	892.0	937.0	3568.0	3748.0	72	904.4	949.4	3617.6	3797.6
986 822.4 927.4 3529.6 3709.6 12 892.4 937.6 376.4 77.6 905.0 905.0 950.0 3500.0 3800.0 987 882.6 927.6 3550.1 371.1 14 892.8 937.6 3750.4 77.0 905.0 950.0 3620.0 3800.0 989 883.0 928.0 352.2 371.2 17 893.4 338.0 375.2 17 905.6 960.2 362.4 3802.4 991 883.4 928.4 353.4 371.6 17 893.4 363.6 374.4 374.4 390.6 960.6 362.2 3802.4 3802.4 3802.4 3802.4 3802.4 3802.4 3802.4 3802.4 3804.8 390.6 576.1 376.0 82.0 960.6 361.2 3804.8 390.4 377.6 376.0 82.0 966.4 951.8 362.4 3806.4 376.8 890.6 961.4 362.4 3806.4 376.8	985	882.2	927.2	3528.8	3708.8	11	892.2	937.2	3568.8	3748.8	73	904.6	949.6	3618.4	3798.4
987 882.6 927.6 3570.4 3750.4 75 905.0 362.0 3800.0 988 882.8 927.8 3551.2 3711.2 76 905.2 950.2 3802.0 3800.0 990 882.2 928.2 3532.8 3712.8 76 76 905.4 950.4 322.4 3802.4 991 883.2 928.8 353.6 3713.6 17 893.4 384.6 3754.8 76.8 1905.6 950.4 3822.4 3803.2 992 883.6 928.6 3554.4 3714.6 18 894.0 930.0 376.0 3756.0 82 906.4 951.8 3622.6 3806.2 996 884.4 929.4 3537.6 3716.0 22 894.4 939.2 376.6 83 906.6 951.8 3627.2 3807.2 997 884.6 929.6 3370.0 3776.0 3776.0 3776.0 977.9 952.8 363.0 3801.4	986	882.4	927.4	3529.6	3709.6	12	892.4	937.4	3569.6	3749.6	74	904.8	949.8	3619.2	3799.2
988 882.6 927.8 3571.2 3771.2 176 905.2 950.2 380.0 3572.0 372.0 17 905.4 950.4 360.1 380.0 3572.8 3752.8 78 905.6 565.6 565.6 565.6 3623.2 380.0 3572.8 3752.8 78 905.6 565.2 3673.3 17 81.4 18 893.6 3574.4 3754.4 80 906.0 951.0 3622.2 380.4 380.4 3575.2 3756.2 19 063.6 966.8 42.0 202.0 3553.6 3776.6 10 062.4 961.4 844.4 922.0 3533.6 3776.8 17 283.6 976.8 44 906.8 951.6 3766.8 3766.8 390.6 957.2 3757.6 8 960.8 961.8 3627.2 380.7 380.8 390.7 972.0 382.8 380.8 390.8 3577.2 3755.4 8 906.8 961.8 992.8 360.8 361.8	987	882.6	927.6	3530.4	3710.4	13	892.6	937.6	3570.4	3750.4	75	905.0	950.0	3620.0	3800.0
989 883.0 928.0 3572.0 3772.0 177 90.4 882.4 952.0 3722.0 177 90.5 952.6 3562.4 380.2 990 883.4 928.4 3553.6 3773.6 178.90.5 992.6 836.4 972.6 3753.6 179 905.6 950.6 362.4 380.4 380.4 375.6 375.6 375.6 375.6 375.6 375.6 375.6 375.6 380.6 357.6 375.6 380.6 961.6 961.6 961.6 362.4 380.4 380.4 376.0 22 962.8 357.6 375.6 375.6 390.6 961.8 992.8 357.8 376.6 84 90.6 951.8 362.2 362.8 380.8 997.8 84.6 929.8 353.9 377.6 84 90.6 951.8 362.6 380.6 360.0 376.0 79.07.4 952.4 382.6 380.6 380.6 360.0 380.0 360.0 380.0 360.0	988	882.8	927.8	3531.2	3711.2	14	892.8	937.8	3571.2	3751.2	76	905.2	950.2	3620.8	3800.8
990 883.2 928.2 3572.8 3772.8 78 905.6 950.6 3622.2 380.2 991 883.6 928.6 3553.4 371.4 17 893.4 938.6 375.6 735.6 910.6 951.0 3622.2 380.4 380.4 993 883.6 928.6 3553.6 3716.0 20 894.0 933.0 3576.0 3756.0 82 906.4 951.4 3622.5 3802.6 3804.6 393.0 3577.6 3756.6 82 906.6 951.4 3622.5 3802.6 3802.6 377.6 3756.6 82 906.6 951.4 3622.5 3802.6 379.0 377.6 375.6 82 906.6 951.4 362.7 3802.6 3802.6 377.0 375.6 82 906.6 961.6 362.2 3802.6 3800.6 3700.0 850.0 962.0 3802.6 3802.6 3800.6 3700.0 870.7 952.6 3802.6 3803.0 3700.0 870.7	989	883.0	928.0	3532.0	3712.0	15	893.0	938.0	3572.0	3752.0	77	905.4	950.4	3621.6	3801.6
991 883.4 924 853.6 3713.6 17 893.4 373.6 375.6 179 905.8 952.2 380.3 924.8 355.4 3714.4 18 893.6 936.6 375.4 375.4 80 90.0 951.0 920.0 3556.0 376.6 376.6 82 90.4 830.6 971.6 3757.6 3757.6 3757.6 836.0 951.4 362.4 362.4 380.4	990	883.2	928.2	3532.8	3712.8	16	893.2	938.2	3572.8	3752.8	78	905.6	950.6	3622.4	3802.4
992 883.6 928.6 3534.4 3714.4 118 993 883.8 3754.4 8754.4 800.0 961.0 3624.0 3804.8 993 883.8 928.8 3575.2 3755.2 815.0 821.2 3624.6 3804.8 994 884.4 929.2 3536.6 3716.6 21 894.4 939.2 3576.8 3756.6 830.6 6 851.8 3626.4 3806.4 996 884.4 929.6 353.8.4 3718.4 22 894.4 939.4 3577.6 3757.6 84 906.8 951.8 3626.2 3600.8 998 884.4 929.6 353.9.4 3718.4 23 894.6 930.8 3570.0 3760.0 877.4 952.2 362.2 362.8 3800.8 998 884.4 920.6 3530.0 3760.0 870.0 877.4 952.8 3631.2 3811.2 1000 885.4 930.0 354.0 3766.0 <td< td=""><td>991</td><td>883.4</td><td>928.4</td><td>3533.6</td><td>3713.6</td><td>17</td><td>893.4</td><td>938.4</td><td>3573.6</td><td>3753.6</td><td>79</td><td>905.8</td><td>950.8</td><td>3623.2</td><td>3803.2</td></td<>	991	883.4	928.4	3533.6	3713.6	17	893.4	938.4	3573.6	3753.6	79	905.8	950.8	3623.2	3803.2
993 883.8 928.8 353.2 3715.2 19 993.8 375.2 3755.2 81 906.2 951.2 3624.8 3804.6 994 884.4 929.2 3536.8 3716.8 21 894.4 939.4 3577.6 3756.8 83 906.6 951.4 3626.4 3806.4 996 884.4 929.4 3537.6 3776.4 3756.4 88 906.6 951.6 3626.4 3806.8 997 884.4 629.6 3539.2 3719.2 24 894.6 930.6 3578.2 3759.2 86 907.0 952.0 3620.8 3809.6 999 850.0 330.0 3540.0 3720.0 2760.0 3760.8 89 907.6 952.6 3630.1 3811.2 1002 885.6 330.6 3541.6 3761.6 89 907.6 952.6 3630.1 3811.2 1002 885.6 330.6 3541.0 3761.6 399 995.0 <td>992</td> <td>883.6</td> <td>928.6</td> <td>3534.4</td> <td>3714.4</td> <td>18</td> <td>893.6</td> <td>938.6</td> <td>3574.4</td> <td>3754.4</td> <td>80</td> <td>906.0</td> <td>951.0</td> <td>3624.0</td> <td>3804.0</td>	992	883.6	928.6	3534.4	3714.4	18	893.6	938.6	3574.4	3754.4	80	906.0	951.0	3624.0	3804.0
994 884.0 920.0 3358.0 3716.0 20 9376.0 3756.0 82 906.4 951.6 3626.4 3806.4 996 884.4 929.4 3537.6 3717.6 22 894.4 939.4 3577.6 3757.6 83 906.6 951.6 3626.7 3807.2 997 884.6 929.6 3538.4 3718.4 23 894.6 939.6 3576.0 3756.0 85 907.0 952.2 3628.8 3808.8 998 884.8 929.6 3539.2 3710.0 25 3628.8 3800.8 3760.0 87 977.4 952.4 3629.6 3800.8 3760.0 87 977.4 952.4 3631.2 3811.0 1001 885.4 330.4 3541.6 377.6 290.9 985.6 930.6 3632.0 3812.0 3812.0 1002 885.6 330.6 3544.3 3724.4 894.6 934.8 3764.4 929.0 953.8 <t< td=""><td>993</td><td>883.8</td><td>928.8</td><td>3535.2</td><td>3715.2</td><td>19</td><td>893.8</td><td>938.8</td><td>3575.2</td><td>3755.2</td><td>81</td><td>906.2</td><td>951.2</td><td>3624.8</td><td>3804.8</td></t<>	993	883.8	928.8	3535.2	3715.2	19	893.8	938.8	3575.2	3755.2	81	906.2	951.2	3624.8	3804.8
996 884.2 929.2 357.6.8 375.6.8 375.6.8 83 906.6 951.6 3627.2 3877.6 375.76 84 906.6 951.8 3627.2 3877.6 375.76 84 906.6 951.8 3627.2 3807.2 3757.6 84 906.6 951.8 3627.2 3807.2 3757.6 84 906.6 951.8 3627.2 3807.2 3757.6 84 906.6 951.8 3627.2 3807.8 3756.3 850.0 3760.0 877.0 84.9 952.8 3630.4 3810.4 1001 854.4 372.4 28 895.6 940.2 3881.6 3761.6 89 907.6 952.8 6331.2 3811.2 3811.2 3811.2 3811.2 3811.2 3812.8 3762.4 90 908.0 953.0 3632.0 3812.0 3811.2 3811.2 3811.2 3811.2 3811.2 3811.2 3812.8 3766.3 914.3 3854.3 3766.4 92 908.4 953.4 8352.2<	994	884.0	929.0	3536.0	3716.0	20	894.0	939.0	3576.0	3756.0	82	906.4	951.4	3625.6	3805.6
996 884.4 929.4 357.6 84 906.8 951.8 352.7.2 3807.2 997 884.6 929.8 3539.4 371.8 2357.4 375.4 355.4 353.0 337.8.4 357.8.4 355 907.1 952.0 362.0 3808.0 3809.6 376.4 375.4 355.4 353.4 337.8.4 357.8.4 357.8.4 357.8.4 357.8.4 357.8.4 357.8.4 357.8.4 357.8.4 357.8.4 357.8.4 357.8.4 357.8.4 357.8.4 357.8.4 357.8.6 366.0 88.0 907.8 952.2 362.2.8 363.2.4 363.1.4 363.1.4 363.1.2 3811.2 1001 885.6 930.6 354.2.4 372.2.1 28 958.9 940.4 358.4.3 3764.0 908.4 953.0 3632.6 3812.0 1003 885.6 931.0 354.4.8 372.4.0 30 896.6 941.0 3584.8 3764.8 93 908.4 953.1 3633.6 <td>995</td> <td>884.2</td> <td>929.2</td> <td>3536.8</td> <td>3716.8</td> <td>21</td> <td>894.2</td> <td>939.2</td> <td>3576.8</td> <td>3756.8</td> <td>83</td> <td>906.6</td> <td>951.6</td> <td>3626.4</td> <td>3806.4</td>	995	884.2	929.2	3536.8	3716.8	21	894.2	939.2	3576.8	3756.8	83	906.6	951.6	3626.4	3806.4
997 884.6 929.6 357.4. 375.4. 375.4. 970.0 952.0 3628.0 3808.0 998 884.8 929.8 353.9.2 371.9.2 24.894.4 939.8 357.9.2 375.9.2 86.907.0 952.2 3628.8 3808.8 999 885.0 930.0 3541.0 372.0.2 25 895.0 940.0 3580.0 3760.0 87 907.4 952.4 3623.12 3811.2 1001 885.4 930.6 3541.6 372.14 828.6 940.0 3581.3 3761.6 89 907.8 952.8 3631.2 3811.2 3811.2 3811.2 3811.2 3811.2 3811.2 3811.2 3811.2 3811.2 3811.2 3811.2 3811.2 3811.4 3864.4 3764.4 92.908.4 953.3 6335.2 3815.3 3816.3 3816.3 3816.3 3816.3 3816.3 3816.3 3816.3 3816.3 3816.3 3816.3 3816.3 3816.3 3816.3 3816.3	996	884.4	929.4	3537.6	3717.6	22	894.4	939.4	3577.6	3757.6	84	906.8	951.8	3627.2	3807.2
998 884.8 929.8 3539.2 3719.2 3759.2 3759.2 3759.2 362.0 972.2 362.8 3800.8 3800.8 362.0 3760.0 25 895.0 940.0 3580.0 3760.0 87 907.4 952.4 362.9.6 3630.4 3810.4 1001 885.4 930.4 3542.4 372.4 28 895.6 940.6 3582.4 3762.4 90 908.0 953.2 3632.0 3812.0 1002 885.6 930.6 3542.4 372.4 28 895.6 940.6 3582.4 3762.4 90 908.4 953.3 3632.0 3812.0 1003 886.0 931.0 3544.0 372.4 31 896.2 941.1 3584.6 3764.8 93 906.6 953.6 363.4 3814.4 1006 886.4 931.4 3546.4 372.4 38 866.9 941.6 3586.4 950.9 954.0 363.6 3816.8	997	884.6	929.6	3538.4	3718.4	23	894.6	939.6	3578.4	3758.4	85	907.0	952.0	3628.0	3808.0
999 885.0 930.0 3540.0 3720.0 25 895.0 940.0 3580.8 3760.0 87 907.4 952.4 362.6 3630.4 3810.4 1000 885.4 930.4 3541.6 3721.6 27 895.4 940.2 3580.8 3760.0 87 997.8 952.8 3630.4 3811.2 1002 885.6 930.6 3543.2 3723.2 29 895.8 940.6 3583.2 3763.2 91 906.2 953.0 3632.6 3812.8 1004 886.0 931.0 3544.0 3724.0 30 896.0 941.1 3584.0 3764.0 92 908.4 953.4 363.6 3813.6 1006 886.4 931.4 3545.6 372.6 32 896.6 941.4 3586.7 3765.6 94 908.4 953.4 363.6 3815.2 1007 886.6 931.6 3544.6 372.6 32 896.6 941.6 3586.4 3768.0 97 909.4 954.0 363.6 3816.8 1010 8	998	884.8	929.8	3539.2	3719.2	24	894.8	939.8	3579.2	3759.2	86	907.2	952.2	3628.8	3808.8
1000 885.2 930.2 3540.8 3720.8 26 895.2 940.2 3580.8 3760.8 88 907.6 952.6 3631.2 3811.2 1002 885.6 930.6 3542.4 3722.4 28 895.6 940.6 3582.4 3763.2 91 908.0 953.0 3632.0 3832.0 1003 886.0 931.0 3544.0 372.4 10 3584.0 3763.2 91 908.2 953.2 3633.6 3813.6 1004 886.4 931.4 3544.0 372.4 10 3686.0 914.1 3586.6 941.6 3586.4 3766.4 95 909.0 953.8 3635.2 3816.0 1007 866.6 931.6 3544.0 372.7 34 896.8 914.8 3586.7 3766.4 95 909.0 954.2 3636.8 3817.6 1008 867.2 932.2 3548.0 3778.0 103 5887.0 976.4 990.9 95	999	885.0	930.0	3540.0	3720.0	25	895.0	940.0	3580.0	3760.0	87	907.4	952.4	3629.6	3809.6
1001 885.4 930.4 3541.6 3721.6 27 895.6 940.6 3581.6 3762.4 89 953.0 3632.0 3812.0 1003 885.6 930.6 3543.2 3723.2 29 895.8 940.6 3582.4 3763.2 91 908.2 953.2 3632.0 3812.0 1004 886.0 931.0 3544.0 3724.0 30 896.0 941.0 3584.0 3763.2 91 908.6 953.2 3633.6 3813.6 1005 886.2 931.1 3544.8 3724.8 31 896.2 941.2 3586.4 3764.6 93 908.6 953.8 3635.2 3815.2 1006 886.4 931.6 3547.2 3727.7 34 896.8 941.6 3586.4 3766.0 97 909.4 954.4 3630.7 3817.6 1008 887.0 932.2 3548.8 3728.8 36 897.0 942.0 3588.0 3768.0 97 99.4 943.4 3633.7 3817.6 1010 887.6 <t< td=""><td>1000</td><td>885.2</td><td>930.2</td><td>3540.8</td><td>3720.8</td><td>26</td><td>895.2</td><td>940.2</td><td>3580.8</td><td>3760.8</td><td>88</td><td>907.6</td><td>952.6</td><td>3630.4</td><td>3810.4</td></t<>	1000	885.2	930.2	3540.8	3720.8	26	895.2	940.2	3580.8	3760.8	88	907.6	952.6	3630.4	3810.4
1002 885.6 930.6 3542.4 3722.4 28 895.6 940.6 3582.4 3763.2 901 908.2 953.2 3632.0 3812.8 1004 886.0 931.0 3544.0 3724.0 30 886.0 941.0 3584.0 3763.2 91 908.2 953.2 3632.6 3812.8 1006 886.2 931.2 3544.8 3724.8 31 896.2 941.2 3584.8 3765.6 94 908.8 953.8 3635.2 3815.2 1006 886.6 931.6 3546.4 3724.8 3786.4 941.6 3586.6 3766.6 94 909.9 954.0 3636.0 3816.0 1008 887.0 932.0 3548.0 3728.0 35 897.0 942.2 3588.0 3760.4 93 909.4 954.4 3633.2 3819.6 1010 887.4 932.4 3550.4 3770.4 910.9 910.9 954.6 3630.0 382.0	1001	885.4	930.4	3541.6	3721.6	27	895.4	940.4	3581.6	3761.6	89	907.8	952.8	3631.2	3811.2
1003 885.8 930.8 3544.2 3723.2 29 995.8 940.8 3583.2 3764.0 92 908.4 953.4 3633.6 3813.6 1006 886.2 931.1 3544.0 3724.6 31 896.2 941.2 3564.8 3764.6 92 908.4 953.4 3633.6 3813.6 1006 886.4 931.4 3545.6 3725.6 32 896.4 941.4 3585.6 3765.6 94 908.8 953.8 3635.2 3815.2 1007 886.6 931.6 3546.3 3725.6 32 896.8 941.8 3587.2 3767.2 96 909.2 954.2 3636.8 3816.8 1008 887.0 932.0 3548.0 3728.8 36 897.0 942.0 3588.0 3768.0 97 909.4 954.4 3632.6 3817.6 3817.6 1010 887.4 932.2 3548.8 3728.8 36 897.2 942.2 3588.0 3768.0 97 999.4 954.4 36332.2 3817.2 3817.6	1002	885.6	930.6	3542.4	3722.4	28	895.6	940.6	3582.4	3762.4	90	908.0	953.0	3632.0	3812.0
1004 886.0 931.0 3544.0 3724.0 30 896.0 941.0 3584.8 3764.8 93 908.6 953.6 363.6 3813.6 1005 886.4 931.4 3544.8 3724.8 31 896.2 941.2 3584.8 3764.8 93 908.6 953.6 363.4 3814.4 1006 886.4 931.6 3546.4 3725.6 32 886.6 941.6 3586.4 3766.4 95 990.9 954.0 363.6 3816.0 1008 886.8 931.8 3547.2 3727.2 34 896.8 942.0 3588.0 3768.0 97 909.4 954.4 3637.6 3817.6 1008 887.2 932.2 3548.8 3728.8 36 897.2 942.2 3588.8 3768.6 98 909.6 954.6 3633.2 3818.4 1011 887.6 932.6 3550.1 3731.2 39 897.6 942.6 3590.4 3771.2 100 910.2 955.4 3641.6 3820.6 1012 <td< td=""><td>1003</td><td>885.8</td><td>930.8</td><td>3543.2</td><td>3723.2</td><td>29</td><td>895.8</td><td>940.8</td><td>3583.2</td><td>3763.2</td><td>91</td><td>908.2</td><td>953.2</td><td>3632.8</td><td>3812.8</td></td<>	1003	885.8	930.8	3543.2	3723.2	29	895.8	940.8	3583.2	3763.2	91	908.2	953.2	3632.8	3812.8
1005 886.2 931.4 3544.8 3724.8 31 896.2 941.2 3584.8 3764.8 93 908.6 953.8 3634.4 3814.4 1006 886.4 931.6 3546.4 3725.6 32 896.4 941.6 3586.6 3765.6 94 908.8 953.8 3635.2 3815.2 1007 886.6 931.6 3546.4 3728.0 32 357.2 3767.2 96 909.2 954.4 3636.8 3816.8 1008 887.0 932.0 3548.0 3728.0 35 897.0 942.0 3588.8 3768.8 909.4 954.4 3638.4 3817.8 1010 887.4 932.2 3548.3 3728.6 3769.6 99 909.8 954.8 3639.2 3817.8 1010 887.4 932.4 3550.4 3731.2 39 994.2 3558.1 3777.4 100 910.2 955.4 3641.6 3820.8 1011 887.4 933.4 3552.0 3732.0 40 898.4 933.6 3777.4	1004	886.0	931.0	3544.0	3724.0	30	896.0	941.0	3584.0	3764.0	92	908.4	953.4	3633.6	3813.6
1006 886.4 931.4 3545.6 3726.6 32 896.4 941.4 3585.6 3766.6 94 908.8 953.8 3635.2 3816.0 1007 886.6 931.6 3546.4 3726.4 33 896.6 941.6 3586.4 3766.2 96 909.0 954.0 3636.0 3816.0 1008 886.8 931.8 3547.2 3727.2 34 896.6 941.8 3587.2 9767.2 96 909.2 954.4 3637.6 3817.6 1010 887.2 932.2 3548.6 3728.6 36 897.2 942.2 3588.8 3768.8 99 909.8 954.4 3639.2 3819.2 1012 887.6 932.6 3550.4 3731.2 39 897.8 942.8 3592.0 3771.2 101 910.2 955.2 3640.0 3820.0 1014 888.0 933.0 3552.2 3732.8 40 898.2 932.2 3777.2 101 910.4 955.4 3642.4 3822.4 1016 888.4	1005	886.2	931.2	3544.8	3724.8	31	896.2	941.2	3584.8	3764.8	93	908.6	953.6	3634.4	3814.4
1007 886.6 931.6 3546.4 3726.4 33 896.6 941.6 3586.4 976.4 95 909.0 954.0 3363.6.0 3816.8 1008 886.8 931.8 3547.2 3727.2 34 896.8 941.8 3587.2 3767.2 96 909.2 954.2 3636.8 3816.8 1009 887.0 932.0 3548.0 3728.0 35 897.0 942.2 3588.8 3768.8 98 909.6 954.8 3639.2 3819.2 1011 887.4 932.4 3549.6 3720.4 38 897.6 942.6 3550.4 3771.2 100 955.2 3640.8 3820.8 1013 887.8 933.2 3552.0 3732.0 40 898.0 943.0 3592.8 3772.8 103 910.6 955.4 3641.6 3822.6 1015 888.6 933.4 3552.0 3732.6 42 898.4 943.2 3592.8 3774.4 <t< td=""><td>1006</td><td>886.4</td><td>931.4</td><td>3545.6</td><td>3725.6</td><td>32</td><td>896.4</td><td>941.4</td><td>3585.6</td><td>3765.6</td><td>94</td><td>908.8</td><td>953.8</td><td>3635.2</td><td>3815.2</td></t<>	1006	886.4	931.4	3545.6	3725.6	32	896.4	941.4	3585.6	3765.6	94	908.8	953.8	3635.2	3815.2
1008 866.8 931.8 3547.2 3728.2 324 896.8 941.0 3587.2 3767.2 96 909.2 954.2 3636.8 3816.8 1009 887.0 932.0 3548.0 3728.0 35 897.0 942.2 3588.8 3768.0 97 909.4 954.4 3637.6 3817.6 1010 887.2 932.2 3548.8 3728.6 36 897.2 942.2 3588.8 3768.8 98 909.6 954.4 3639.2 3818.4 1011 887.6 932.6 3550.4 3730.4 38 897.6 942.6 3590.1 3771.2 101 910.2 955.2 3640.8 3820.8 1013 887.8 932.0 3551.2 3732.0 40 898.0 943.0 3592.8 3772.8 103 910.6 955.6 3642.4 382.0 1017 888.4 933.6 3555.0 3736.2 44 898.6 943.6 3594.4	1007	886.6	931.6	3546.4	3726.4	33	896.6	941.6	3586.4	3766.4	95	909.0	954.0	3636.0	3816.0
1009 887.0 932.0 3548.0 3728.0 35 897.0 942.0 3588.0 3768.0 97 909.4 954.4 3637.6 3817.6 1010 887.2 932.2 3548.8 3728.8 36 897.2 942.2 3588.8 3768.6 99 909.8 954.6 3638.4 3818.4 1011 887.6 932.6 3550.4 3730.4 38 897.6 942.6 3590.4 3770.4 100 910.0 955.0 3640.0 3820.0 1012 887.6 932.2 3551.2 3731.2 39 897.8 942.8 3591.2 3771.2 101 910.4 955.4 3641.6 3820.8 1014 888.0 933.2 3552.6 3732.6 41 898.2 943.2 3592.6 3772.8 104 910.8 955.8 3643.2 3823.2 1016 888.4 933.4 3555.6 3736.4 42 898.4 933.4 3556.6 <td< td=""><td>1008</td><td>886.8</td><td>931.8</td><td>3547.2</td><td>3727.2</td><td>34</td><td>896.8</td><td>941.8</td><td>3587.2</td><td>3767.2</td><td>96</td><td>909.2</td><td>954.2</td><td>3636.8</td><td>3816.8</td></td<>	1008	886.8	931.8	3547.2	3727.2	34	896.8	941.8	3587.2	3767.2	96	909.2	954.2	3636.8	3816.8
1010 887.2 932.2 3548.8 3768.8 98 909.6 954.6 3638.4 3818.4 1011 887.4 932.4 3549.6 379.6 37 897.4 942.4 3589.6 379.6 99 99.8 954.8 3639.2 3819.2 1012 887.6 932.6 3550.4 3730.2 39 897.8 942.6 3591.2 3771.2 101 910.2 955.0 3640.0 3820.0 1013 887.8 932.6 3550.4 3731.2 39 897.8 942.8 3591.2 3771.2 101 910.4 955.4 3640.8 3820.8 1016 888.4 933.4 3553.6 3733.6 42 898.4 943.2 3593.6 3775.2 104 910.8 955.8 3643.2 3823.2 1017 888.6 933.8 3555.2 3735.2 44 898.6 943.2 3594.4 3774.4 105 911.0 956.0 3644.0 3824.0 1018 888.8 933.8 3555.2 3735.2 44	1009	887.0	932.0	3548.0	3728.0	35	897.0	942.0	3588.0	3768.0	97	909.4	954.4	3637.6	3817.6
1011 887.4 942.4 358.6 3769.6 99 90.8 954.8 3639.2 3819.2 1012 887.6 932.6 3550.4 3730.4 38 897.6 942.6 3590.4 3770.4 100 910.0 955.0 3640.0 3820.8 1013 887.8 933.0 3552.0 3732.0 40 898.0 943.0 3592.0 3772.6 102 910.4 955.4 3641.6 3820.8 1015 888.2 933.2 3552.8 3732.8 41 898.2 943.2 3592.8 3772.8 103 910.6 955.6 3642.4 3822.4 1016 888.4 933.4 3555.2 3735.6 42 898.4 943.3 3595.2 3777.6 104 910.8 956.0 3644.0 3824.0 1017 888.6 933.8 3555.2 3735.2 44 898.6 943.8 3595.2 3775.2 106 911.2 956.0 3644.8 3824.8 1018 889.0 934.4 3556.7 3736.6 47<8	1010	887.2	932.2	3548.8	3728.8	36	897.2	942.2	3588.8	3768.8	98	909.6	954.6	3638.4	3818.4
1012 887.6 932.6 3550.4 3730.4 38 897.6 942.6 3590.4 3771.2 100 910.0 955.0 3640.0 3820.0 1013 887.8 932.8 3551.2 3731.2 39 897.8 942.8 3591.2 3771.2 101 910.2 955.2 3640.8 3820.8 1014 888.0 933.0 3552.0 3732.0 40 898.0 943.0 3592.0 3772.0 102 910.4 955.4 3641.6 3821.6 1015 888.2 933.2 3552.6 3733.6 42 898.4 943.4 3593.6 3773.6 104 910.8 955.8 3643.2 3823.2 1017 888.6 933.8 3555.2 3735.2 44 898.6 943.8 3595.2 3776.0 107 911.4 956.4 3644.8 3824.8 1018 888.8 933.8 3555.2 3736.6 47 899.0 944.0 3596.0 3776.0 107 911.4 956.4 36442.4 3824.8 1018	1011	887.4	932.4	3549.6	3729.6	37	897.4	942.4	3589.6	3769.6	99	909.8	954.8	3639.2	3819.2
1013 887.8 932.8 3551.2 3731.2 39 897.8 942.8 3591.2 3771.2 101 910.2 955.2 3640.8 3820.8 1014 888.0 933.0 3552.0 3732.0 40 898.0 943.0 3592.0 3772.2 102 910.4 955.4 3641.6 3821.6 1015 888.2 933.2 3552.8 3732.8 41 898.2 943.2 3593.6 3773.6 104 910.6 955.6 3642.4 3822.4 1016 888.4 933.6 3554.4 3734.4 43 898.6 943.6 3594.4 3774.4 105 911.0 956.0 3644.0 3824.0 1018 888.8 933.8 3555.2 3735.2 44 898.9 944.0 3596.0 3776.0 107 911.4 956.4 3645.6 3826.4 1020 889.4 934.4 3557.6 3737.6 47 899.4 944.2 3597.6 3777.6 109 911.8 956.8 3647.2 3827.2 1021	1012	887.6	932.6	3550.4	3730.4	38	897.6	942.6	3590.4	3770.4	100	910.0	955.0	3640.0	3820.0
1014 888.0 933.0 3552.0 3772.0 102 910.4 955.4 3641.6 3821.6 1015 888.2 933.2 3552.8 3732.8 41 898.2 943.2 3592.8 3772.6 103 910.6 955.6 3642.4 3822.4 1016 888.4 933.4 3553.6 3734.4 43 898.6 943.6 3593.6 3773.6 104 910.8 955.8 3643.2 3823.2 1017 888.6 933.6 3555.2 3735.2 44 898.6 943.6 3595.2 3775.2 106 911.2 956.2 3644.8 3824.9 1018 888.8 933.8 3555.2 3736.0 45 899.0 944.0 3596.0 3776.6 107 911.4 956.4 3645.6 3825.6 1020 889.2 934.2 3556.8 3736.8 46 899.2 944.2 3596.8 3777.6 109 911.8 956.8 3647.2 3827.2 1022 889.6 934.6 3558.4 3738.4 48	1013	887.8	932.8	3551.2	3731.2	39	897.8	942.8	3591.2	3771.2	101	910.2	955.2	3640.8	3820.8
1015 888.2 933.2 3552.8 3732.8 41 898.2 943.2 3592.8 3772.8 103 910.6 955.6 3642.4 3822.4 1016 888.4 933.4 3553.6 3733.6 42 898.4 943.4 3593.6 3773.6 104 910.8 955.8 3643.2 3823.2 1017 888.6 933.6 3554.4 3734.4 43 898.6 943.6 3594.4 3774.4 105 911.0 956.0 3644.0 3824.0 1018 888.9 933.8 3555.2 3735.2 44 898.8 943.8 3595.2 3775.2 106 911.2 956.2 3644.8 3824.8 1018 889.0 934.4 3557.6 3737.6 47 899.4 944.2 3596.8 3776.8 108 911.6 956.6 3646.4 3824.7 1021 889.4 934.4 3559.2 3739.2 49 899.4 3599.2 3779.2 111 912.2 957.2 3648.8 3828.8 0 890.0 3559.2	1014	888.0	933.0	3552.0	3732.0	40	898.0	943.0	3592.0	3772.0	102	910.4	955.4	3641.6	3821.6
1016 888.4 933.4 3553.6 3733.6 42 898.4 943.4 3593.6 3773.6 104 910.8 955.8 3643.2 3823.2 1017 888.6 933.6 3554.4 3734.4 43 898.6 943.6 3594.4 3774.4 105 911.0 956.2 3644.0 3824.0 1018 888.8 933.8 3555.2 3735.2 44 898.8 943.8 3595.2 3775.2 106 911.2 956.2 3644.8 3824.8 1019 889.0 934.0 3556.0 3736.0 45 899.0 944.0 3596.8 3776.8 108 911.4 956.4 3645.6 3824.6 1021 889.4 934.4 3557.6 3737.6 47 899.4 944.4 3597.6 3777.6 109 911.8 956.8 3647.2 3827.2 1022 889.6 934.6 3558.4 3738.4 48 899.6 944.6 3598.4 3778.4 110 912.0 957.0 3648.0 3828.0 1023	1015	888.2	933.2	3552.8	3732.8	41	898.2	943.2	3592.8	3772.8	103	910.6	955.6	3642.4	3822.4
1017 888.6 933.6 3554.4 3734.4 43 898.6 943.6 3594.4 3774.4 105 911.0 956.0 3644.0 3824.0 1018 888.8 933.8 3555.2 3773.2 44 898.8 943.8 3595.2 3775.2 106 911.2 956.2 3644.8 3824.8 1019 889.0 934.0 3556.0 3736.0 45 899.0 944.0 3596.0 3776.0 107 911.4 956.4 3645.6 3825.6 1020 889.4 934.4 3557.6 3737.6 47 899.4 944.4 3597.6 3777.6 109 911.8 956.6 3646.4 3826.0 1021 889.4 934.4 3557.6 3737.6 47 899.4 944.4 3597.6 3777.2 111 912.0 957.0 3648.0 3828.0 1023 889.8 934.8 3559.2 3739.2 49 899.8 944.8 3599.2 3779.2 111 912.2 957.4 3649.6 3829.6 51 900.2	1016	888.4	933.4	3553.6	3733.6	42	898.4	943.4	3593.6	3773.6	104	910.8	955.8	3643.2	3823.2
1018 888.8 933.8 3555.2 3735.2 44 898.8 943.8 3595.2 3776.2 106 911.2 956.2 3644.8 3824.8 1019 889.0 934.0 3556.0 3736.0 45 899.0 944.0 3596.0 3776.0 107 911.4 956.4 3645.6 3825.6 1020 889.2 934.2 3556.8 3736.8 46 899.2 944.2 3596.8 3776.8 108 911.6 956.6 3646.4 3826.4 1021 889.4 934.4 3557.6 3737.6 47 899.4 944.4 3597.6 3777.6 109 911.8 956.8 3647.2 3827.2 1023 889.8 934.8 3559.2 3739.2 49 899.8 944.8 3599.2 3779.2 111 912.0 957.4 3648.8 828.8 0 890.0 935.0 3560.0 3740.0 50 900.0 945.0 3600.0 3	1017	888.6	933.6	3554.4	3734.4	43	898.6	943.6	3594.4	3774.4	105	911.0	956.0	3644.0	3824.0
1019 389.0 934.0 350.0 3736.0 45 899.0 944.0 3596.0 3776.0 107 911.4 956.4 3645.6 3825.6 1020 889.2 934.2 3556.8 3736.8 46 899.2 944.2 3596.8 3776.6 108 911.6 956.6 3646.4 3826.4 1021 889.4 934.4 3557.6 3737.6 47 899.4 944.4 3597.6 3777.6 109 911.8 956.8 3647.2 3827.2 1022 889.6 934.6 3558.4 3738.4 48 899.6 944.6 3598.4 3777.2 111 912.0 957.0 3648.8 3828.8 0 890.0 935.0 3560.0 3740.0 50 900.0 945.0 3600.0 3780.8 113 912.4 957.4 3649.6 382.9 0 890.0 935.0 3560.0 3740.0 50 900.2 945.2 3600.8 3780.	1018	888.8	933.8	3555.2	3/35.2	44	898.8	943.8	3595.2	3/75.2	106	911.2	956.2	3644.8	3824.8
1020 889.2 934.2 3596.8 3736.8 46 899.2 944.2 3596.8 3776.8 108 911.6 956.6 3646.4 3826.4 1021 889.4 934.4 3557.6 3737.6 47 899.4 944.4 3597.6 3777.6 109 911.8 956.8 3647.2 3827.2 1022 889.6 934.6 3558.4 3738.4 48 899.6 944.6 3598.4 3778.4 110 912.0 957.0 3648.0 3828.0 1023 889.8 934.8 3559.2 3739.2 49 899.8 944.8 3599.2 3779.2 111 912.2 957.2 3648.8 3828.8 3628.6 0 890.0 935.0 3560.0 3740.0 50 900.0 945.0 3600.0 3780.8 113 912.6 957.6 3650.4 383.0 51 900.2 945.2 3600.8 3781.6 114 912.8 957.8 3651.2 383.12 53 900.6 945.6 3602.4 3783.2	1019	889.0	934.0	3556.0	3/36.0	45	899.0	944.0	3596.0	3/76.0	107	911.4	956.4	3645.6	3825.6
1021 069.4 934.4 3507.0 3737.0 47 899.4 944.4 3597.0 3777.6 109 911.8 956.8 3647.2 3827.2 1022 889.6 934.6 3558.4 3738.4 48 899.6 944.6 3598.4 3778.4 110 912.0 957.0 3648.0 3828.0 1023 889.8 934.8 3559.2 3739.2 49 899.8 944.8 3599.2 3779.2 111 912.2 957.2 3648.8 3828.8 0 890.0 935.0 3560.0 374.0.0 50 900.0 945.2 3600.8 3780.8 113 912.6 957.6 3650.4 3830.4 52 900.4 945.4 3601.6 3781.6 114 912.8 957.8 3651.2 3831.2 53 900.6 945.6 3602.4 3782.4 115 913.0 958.0 3652.0 3832.0 54 900.8 945.8 3603.2<	1020	889.2	934.2	3556.8	3/36.8	46	899.2	944.2	3596.8	3776.8	108	911.6	956.6	3646.4	3826.4
1022 559.0 934.6 3558.4 3738.4 48 899.6 944.6 3598.4 3778.4 110 912.0 957.0 3648.0 3828.0 1023 889.8 934.8 3559.2 3739.2 49 899.8 944.8 3599.2 3779.2 111 912.2 957.2 3648.8 3828.8 0 890.0 935.0 3560.0 3740.0 50 900.0 945.2 3600.0 3780.0 112 912.4 957.4 3649.6 3829.6 51 900.2 945.2 3600.8 3780.8 113 912.6 957.6 3650.4 3830.4 52 900.4 945.4 3601.6 3781.6 114 912.8 957.8 3651.2 3831.2 53 900.6 945.6 3602.4 3782.4 115 913.0 958.0 3652.0 3832.8 55 901.0 946.0 3604.0 3784.8 117 913.4 958.4 3655.2 <td>1021</td> <td>889.4</td> <td>934.4</td> <td>3557.6</td> <td>3/3/.6</td> <td>4/</td> <td>899.4</td> <td>944.4</td> <td>3597.6</td> <td>3///.6</td> <td>109</td> <td>911.8</td> <td>956.8</td> <td>3047.2</td> <td>3827.2</td>	1021	889.4	934.4	3557.6	3/3/.6	4/	899.4	944.4	3597.6	3///.6	109	911.8	956.8	3047.2	3827.2
1023 069.0 934.8 359.2 3739.2 49 899.6 944.8 3599.2 3779.2 111 912.2 957.2 3648.8 3828.8 0 890.0 935.0 3560.0 3740.0 50 900.0 945.0 3600.0 3780.0 112 912.4 957.4 3649.6 3829.6 51 900.2 945.2 3600.8 3780.8 113 912.6 957.6 3650.4 3830.4 52 900.4 945.4 3601.6 3781.6 114 912.8 957.8 3651.2 3831.2 53 900.6 945.6 3602.4 3782.4 115 913.0 958.0 3652.0 3832.8 55 901.0 946.0 3604.0 3784.0 117 913.4 958.4 3655.6 3833.6 55 901.2 946.2 3604.8 3784.8 118 913.6 958.6 3655.2 3835.2 58 901.6 946.6	1022	889.6	934.6	3558.4	3/38.4	48	899.6	944.6	3598.4	3778.4	110	912.0	957.0	3648.0	3828.0
0 590.0 935.0 3740.0 50 900.0 945.0 3600.0 3780.0 112 912.4 957.4 3649.6 3829.6 51 900.2 945.2 3600.8 3780.8 113 912.6 957.6 3650.4 3830.4 52 900.4 945.4 3601.6 3781.6 114 912.8 957.8 3651.2 3831.2 53 900.6 945.6 3602.4 3782.4 115 913.0 958.0 3652.0 3832.0 54 900.8 945.8 3603.2 3783.2 116 913.2 958.2 3652.8 3832.8 55 901.0 946.0 3604.0 3784.0 117 913.4 958.4 3653.6 3833.6 55 901.2 946.2 3604.8 3784.8 118 913.6 958.6 3654.4 3834.4 57 901.4 946.4 3605.6 3785.6 119 913.8 958.8 3655.2	1023	889.8	934.8	3559.2	3739.2	49	899.8	944.8	3599.2	3779.2	111	912.2	957.2	3648.8	3828.8
51 900.2 945.2 3600.8 3780.8 113 912.6 957.6 3650.4 3830.4 52 900.4 945.4 3601.6 3781.6 114 912.8 957.8 3651.2 3831.2 53 900.6 945.6 3602.4 3782.4 115 913.0 958.0 3652.0 3832.0 54 900.8 945.8 3603.2 3783.2 116 913.2 958.2 3652.8 3832.8 55 901.0 946.0 3604.0 3784.0 117 913.4 958.4 3653.6 3833.6 56 901.2 946.2 3604.8 3784.8 118 913.6 958.6 3654.4 3834.4 57 901.4 946.4 3605.6 3785.6 119 913.8 958.8 3655.2 3835.2 58 901.6 946.8 3607.2 3787.2 121 914.0 959.0 3656.0 3836.0 59 901.8 946.8 3607.2 3787.2 121 914.2 959.2 3656.8 3836	⊢_0	890.0	935.0	3560.0	3/40.0	50	900.0	945.0	3600.0	3/80.0	112	912.4	957.4	3649.6	3829.6
1 1 2 900.4 945.4 3601.6 3781.6 114 912.8 957.8 3651.2 3831.2 53 900.6 945.6 3602.4 3782.4 115 913.0 958.0 3652.0 3832.0 54 900.8 945.8 3603.2 3783.2 116 913.2 958.2 3652.8 3832.8 55 901.0 946.0 3604.0 3784.0 117 913.4 958.4 3663.6 3833.6 56 901.2 946.2 3604.8 3784.8 118 913.6 958.6 3654.4 3834.4 57 901.4 946.4 3605.6 3785.6 119 913.8 958.8 3655.2 3835.2 58 901.6 946.6 3606.4 3786.4 120 914.0 959.0 3656.0 3836.0 59 901.8 946.8 3607.2 3787.2 121 914.2 959.2 3656.8 3836.8 60 902.0 947.0 3608.0 3788.0 122 914.4 959.4						51	900.2	945.2	3000.8	3/80.8	113	912.6	957.6	3050.4	3830.4
53 900.0 945.0 3602.4 3782.4 115 913.0 958.0 3652.0 3832.0 54 900.8 945.8 3603.2 3783.2 116 913.2 958.2 3652.8 3832.8 55 901.0 946.0 3604.0 3784.0 117 913.4 958.4 3653.6 3833.6 56 901.2 946.2 3604.8 3784.8 118 913.6 958.6 3654.4 3834.4 57 901.4 946.4 3605.6 3785.6 119 913.8 958.8 3655.2 3835.2 58 901.6 946.6 3606.4 3786.4 120 914.0 959.0 3656.0 3836.0 59 901.8 946.8 3607.2 3787.2 121 914.2 959.2 3656.8 3836.8 60 902.0 947.0 3608.0 3788.0 122 914.4 959.4 3657.6 3837.6 61 902.2 947.2 3608.8 3788.8 123 914.6 959.6 3658.4 3838						52	900.4	945.4	3001.0	3/01.0	114	912.8	957.8	3051.2	3031.2
34 900.0 945.0 3003.2 3783.2 110 913.2 958.2 3652.8 3832.8 55 901.0 946.0 3604.0 3784.0 117 913.4 958.4 3653.6 3833.6 56 901.2 946.2 3604.8 3784.8 118 913.6 958.6 3654.4 3834.4 57 901.4 946.4 3605.6 3785.6 119 913.8 958.8 3655.2 3835.2 58 901.6 946.6 3606.4 3786.4 120 914.0 959.0 3656.0 3836.0 59 901.8 946.8 3607.2 3787.2 121 914.2 959.2 3656.8 3836.8 60 902.0 947.0 3608.0 3788.0 122 914.4 959.4 3657.6 3837.6 61 902.2 947.2 3608.8 3788.8 123 914.6 959.6 3658.4 3838.4 62 902.4 947.4 3609.6 3789.6 124 914.8 959.8 3657.2 3838						53	900.6	945.6	3602.4	3102.4	115	913.0	958.0	3652.0	3032.0
53 501.0 540.0 3004.0 3764.0 117 913.4 956.4 3653.6 3833.6 56 901.2 946.2 3604.8 3784.8 118 913.6 958.6 3654.4 3834.4 57 901.4 946.4 3605.6 3785.6 119 913.8 958.8 3655.2 3835.2 58 901.6 946.6 3606.4 3786.4 120 914.0 959.0 3656.0 3836.0 59 901.8 946.8 3607.2 3787.2 121 914.2 959.2 3656.8 3836.8 60 902.0 947.0 3608.0 3788.0 122 914.4 959.4 3657.6 3837.6 61 902.2 947.2 3608.8 3788.8 123 914.6 959.6 3658.4 3838.4 62 902.4 947.4 3609.6 3789.6 124 914.8 959.8 3657.2 3838.3						94 55	900.8	945.8	3604.0	37010	110	012 4	950.2	3652.0	3032.8
50 501.2 540.2 5004.0 574.0 110 913.0 950.0 5054.4 3334.4 57 901.4 946.4 3605.6 3785.6 119 913.8 958.8 3655.2 3835.2 58 901.6 946.6 3606.4 3786.4 120 914.0 959.0 3656.0 3836.0 59 901.8 946.8 3607.2 3787.2 121 914.2 959.2 3656.8 3836.8 60 902.0 947.0 3608.0 3788.0 122 914.4 959.4 3657.6 3837.6 61 902.2 947.2 3608.8 3788.8 123 914.6 959.6 3658.4 3838.4 62 902.4 947.4 3609.6 3789.6 124 914.8 959.8 3657.2 3838.4						55	901.0	940.0	3604.0	3704.0	110	0120	950.4	3654 4	3033.0
57 501.4 540.4 500.0 570.0 119 91.3.0 950.6 3655.2 3835.2 58 901.6 946.6 3606.4 3786.4 120 914.0 959.0 3656.0 3836.0 59 901.8 946.8 3607.2 3787.2 121 914.2 959.2 3656.8 3836.8 60 902.0 947.0 3608.0 3788.0 122 914.4 959.4 3657.6 3837.6 61 902.2 947.2 3608.8 3788.8 123 914.6 959.6 3658.4 3838.4 62 902.4 947.4 3609.6 3789.6 124 914.8 959.8 3658.2 3838.4						50	901.2	940.2	3605.0	3705 0	110	012.0	900.0	3054.4	3034.4
30 301.0 340.0 300.4 3700.4 120 914.0 939.0 3650.0 3638.0 59 901.8 946.8 3607.2 3787.2 121 914.2 959.2 3656.8 3836.8 60 902.0 947.0 3608.0 3788.0 122 914.4 959.4 3657.6 3837.6 61 902.2 947.2 3608.8 3788.8 123 914.6 959.6 3658.4 3838.4 62 902.4 947.4 3609.6 3789.6 124 914.8 959.8 3658.2 3838.4						57	901.4	940.4	3606 4	3796 4	120	913.8	900.8	3656.0	3836 0
59 901.0 940.0 5007.2 5767.2 121 914.2 959.2 3650.8 3836.8 60 902.0 947.0 3608.0 3788.0 122 914.4 959.4 3657.6 3837.6 61 902.2 947.2 3608.8 3788.8 123 914.6 959.6 3658.4 3838.4 62 902.4 947.4 3609.6 3789.6 124 914.8 959.8 3659.2 3839.4						50	001.0	046.0	3607.0	2707.0	120	014.0	909.0	3656.0	2020.0
61 902.2 947.2 3608.8 3788.8 123 914.4 959.4 3657.6 3637.6 62 902.4 947.4 3609.6 3789.6 124 914.8 959.8 3659.2 3839.2						60	002.0	940.0	3602.0	3700 0	121	011 A	909.2	3657 6	3837 6
						61	Q02.0	947.0	3608 0	3788 9	122	Q1/ 6	959.4	3659 4	3838 1
						62	902.2	947.4	3609.6	3789.6	124	914.8	959.0	3659.2	3839.2

GSM1800

СН	ТХ	RX	VCO TX	VCO RX	СН	ТХ	RX	vco тх	VCO RX	СН	ТХ	RX	vco тх	VCO RX	СН	ТХ	RX	VCO TX	VCO RX
512	1710.2	1805.2	3420.4	3610.4	606	1729.0	1824.0	3458.0	3648.0	700	1747.8	1842.8	3495.6	3685.6	794	1766.6	1861.6	3533.2	3723.2
513	1710.4	1805.4	3420.8	3610.8	607	1729.2	1824.2	3458.4	3648.4	701	1748.0	1843.0	3496.0	3686.0	795	1766.8	1861.8	3533.6	3723.6
514	1710.6	1805.6	3421.2	3011.2	608	1729.4	1824.4	3458.8	3648.8	702	1748.2	1843.2	3496.4	3080.4	796	1767.0	1862.0	3534.0	3724.0
516	1710.0	1806.0	3422.0	3612.0	610	1729.0	1824.8	3459.6	3649.6	703	1748.6	1843.6	3497.2	3687.2	798	1767.2	1862.4	3534.4	3724.4
517	1711.2	1806.2	3422.4	3612.4	611	1730.0	1825.0	3460.0	3650.0	705	1748.8	1843.8	3497.6	3687.6	799	1767.6	1862.6	3535.2	3725.2
518	1711.4	1806.4	3422.8	3612.8	612	1730.2	1825.2	3460.4	3650.4	706	1749.0	1844.0	3498.0	3688.0	800	1767.8	1862.8	3535.6	3725.6
519	1711.6	1806.6	3423.2	3613.2	613	1730.4	1825.4	3460.8	3650.8	707	1749.2	1844.2	3498.4	3688.4	801	1768.0	1863.0	3536.0	3726.0
520	1711.8	1806.8	3423.6	3613.6	614	1730.6	1825.6	3461.2	3651.2	708	1749.4	1844.4	3498.8	3688.8	802	1768.2	1863.2	3536.4	3726.4
522	1712.0	1807.0	3424.0	3614.0	616	1730.0	1826.0	3462.0	3652.0	709	1749.0	1844.8	3499.2	3689.2	804	1768.6	1863.6	3537.2	3727.2
523	1712.4	1807.4	3424.8	3614.8	617	1731.2	1826.2	3462.4	3652.4	711	1750.0	1845.0	3500.0	3690.0	805	1768.8	1863.8	3537.6	3727.6
524	1712.6	1807.6	3425.2	3615.2	618	1731.4	1826.4	3462.8	3652.8	712	1750.2	1845.2	3500.4	3690.4	806	1769.0	1864.0	3538.0	3728.0
525	1712.8	1807.8	3425.6	3615.6	619	1731.6	1826.6	3463.2	3653.2	713	1750.4	1845.4	3500.8	3690.8	807	1769.2	1864.2	3538.4	3728.4
526	1713.0	1808.0	3426.0	3616.0	620	1731.8	1826.8	3463.6	3653.6	714	1750.6	1845.6	3501.2	3691.2	808	1769.4	1864.4	3538.8	3728.8
528	1713.2	1808.4	3426.8	3616.8	622	1732.0	1827.2	3464.0	3654.0	716	1750.6	1846.0	3502.0	3691.0	810	1769.0	1864.8	3539.2	3729.2
529	1713.6	1808.6	3427.2	3617.2	623	1732.4	1827.4	3464.8	3654.8	717	1751.2	1846.2	3502.4	3692.4	811	1770.0	1865.0	3540.0	3730.0
530	1713.8	1808.8	3427.6	3617.6	624	1732.6	1827.6	3465.2	3655.2	718	1751.4	1846.4	3502.8	3692.8	812	1770.2	1865.2	3540.4	3730.4
531	1714.0	1809.0	3428.0	3618.0	625	1732.8	1827.8	3465.6	3655.6	719	1751.6	1846.6	3503.2	3693.2	813	1770.4	1865.4	3540.8	3730.8
532	1714.2	1809.2	3428.4	3618.4	626	1733.0	1828.0	3466.0	3656.0	720	1751.8	1846.8	3503.6	3693.6	814	1770.6	1865.6	3541.2	3731.2
534	1714.4	1809.4	3429.2	3619.2	628	1733.2	1828.4	3466.8	3656.8	722	1752.0	1847.2	3504.0	3694.0	816	1771.0	1866.0	3542.0	3731.0
535	1714.8	1809.8	3429.6	3619.6	629	1733.6	1828.6	3467.2	3657.2	723	1752.4	1847.4	3504.8	3694.8	817	1771.2	1866.2	3542.4	3732.4
536	1715.0	1810.0	3430.0	3620.0	630	1733.8	1828.8	3467.6	3657.6	724	1752.6	1847.6	3505.2	3695.2	818	1771.4	1866.4	3542.8	3732.8
537	1715.2	1810.2	3430.4	3620.4	631	1734.0	1829.0	3468.0	3658.0	725	1752.8	1847.8	3505.6	3695.6	819	1771.6	1866.6	3543.2	3733.2
538	1715.4	1810.4	3430.8	3621.8	632	1/34.2	1829.2	3468.4	3659.9	126	1753.0	1848.0	3506.0	3696.0	820 821	17720	1867.0	3543.6	3734.0
540	1715.8	1810.8	3431.6	3621.2	634	1734.4	1829.6	3469.2	3659.2	728	1753.4	1848.4	3506.8	3696.8	822	1772.2	1867.2	3544.4	3734.4
541	1716.0	1811.0	3432.0	3622.0	635	1734.8	1829.8	3469.6	3659.6	729	1753.6	1848.6	3507.2	3697.2	823	1772.4	1867.4	3544.8	3734.8
542	1716.2	1811.2	3432.4	3622.4	636	1735.0	1830.0	3470.0	3660.0	730	1753.8	1848.8	3507.6	3697.6	824	1772.6	1867.6	3545.2	3735.2
543	1716.4	1811.4	3432.8	3622.8	637	1735.2	1830.2	3470.4	3660.4	731	1754.0	1849.0	3508.0	3698.0	825	1772.8	1867.8	3545.6	3735.6
544 545	1716.6	1811.5	3433.2	3623.2	638	1735.4	1830.4	3470.8	3661.2	732	1754.2	1849.2	3508.4	3608.2	826 827	1773.0	1868.0	3546.0	3736.0
546	1717.0	1812.0	3434.0	3624.0	640	1735.8	1830.8	3471.6	3661.6	734	1754.6	1849.6	3509.2	3699.2	828	1773.4	1868.4	3546.8	3736.8
547	1717.2	1812.2	3434.4	3624.4	641	1736.0	1831.0	3472.0	3662.0	735	1754.8	1849.8	3509.6	3699.6	829	1773.6	1868.6	3547.2	3737.2
548	1717.4	1812.4	3434.8	3624.8	642	1736.2	1831.2	3472.4	3662.4	736	1755.0	1850.0	3510.0	3700.0	830	1773.8	1868.8	3547.6	3737.6
549	1717.6	1812.0	3435.2 3435.6	3625.2	643 644	1736.4	1831.4	3472.8	3663.2	738	1755.2	1850.2	3510.4	3700.4	831	1774.0	1869.0	3548.0	3738.0
551	1718.0	1813.0	3436.0	3626.0	645	1736.8	1831.8	3473.6	3663.6	739	1755.6	1850.6	3511.2	3701.2	833	1774.4	1869.4	3548.8	3738.8
552	1718.2	1813.2	3436.4	3626.4	646	1737.0	1832.0	3474.0	3664.0	740	1755.8	1850.8	3511.6	3701.6	834	1774.6	1869.6	3549.2	3739.2
553	1718.4	1813.4	3436.8	3626.8	647	1737.2	1832.2	3474.4	3664.4	741	1756.0	1851.0	3512.0	3702.0	835	1774.8	1869.8	3549.6	3739.6
554	1718.6	1813.6	3437.2	3627.2	648	1737.4	1832.4	3474.8	3664.8	742	1756.2	1851.2	3512.4	3702.4	836	1775.0	1870.0	3550.0	3740.0
556	1719.0	1814.0	3438.0	3628.0	650	1737.0	1832.8	3475.6	3665.6	754	1756.6	1851.6	3513.2	3702.0	838	1775.4	1870.2	3550.4	3740.4
557	1719.2	1814.2	3438.4	3628.4	651	1738.0	1833.0	3476.0	3666.0	745	1756.8	1851.8	3513.6	3703.6	839	1775.6	1870.6	3551.2	3741.2
558	1719.4	1814.4	3438.8	3628.8	652	1738.2	1833.2	3476.4	3666.4	746	1757.0	1852.0	3514.0	3704.0	840	1775.8	1870.8	3551.6	3741.6
559	1719.6	1814.6	3449.2	3629.2	653	1738.4	1833.4	3476.8	3666.8	747	1757.2	1852.2	3514.4	3704.4	841	1776.0	1871.0	3552.0	3742.0
560	1719.8	1814.8	3449.6	3629.6	654	1738.6	1833.6	3477.6	3667.2	748	1757.6	1852.4	3514.8	3704.8	842	1776.2	1871.2	3552.4	3742.4
562	1720.0	1815.2	3440.4	3630.4	656	1739.0	1834.0	3478.0	3668.0	750	1757.8	1852.8	3515.6	3705.6	844	1776.6	1871.6	3553.2	3743.2
563	1720.4	1815.4	3440.8	3630.8	657	1739.2	1834.2	3478.4	3668.4	751	1758.0	1853.0	3516.0	3706.0	845	1776.8	1871.8	3553.6	3743.6
564	1720.6	1815.6	3441.2	3631.2	658	1739.4	1834.4	3478.8	3668.8	752	1758.2	1853.2	3516.4	3706.4	846	1777.0	1872.0	3554.0	3744.0
565	1720.8	1815.8	3441.6	3631.6	659	1739.6	1834.6	3479.2	3669.2	753	1758.4	1853.4	3516.8	3706.8	847	1777.2	1872.2	3554.4	3744.4
567	1721.0	1816.0	3442.0	3632.0	661	1739.8	1834.8	3479.6	3670.0	754	1758.6	1853.0	3517.2	3707.2	848	1777.6	1872.6	3555.2	3744.8
568	1721.4	1816.4	3442.8	3632.8	662	1740.2	1835.2	3480.4	3670.4	756	1759.0	1854.0	3518.0	3708.0	850	1777.8	1872.8	3555.6	3745.6
569	1721.6	1816.6	3443.2	3633.2	663	1740.4	1835.4	3480.8	3670.8	757	1759.2	1854.2	3518.4	3708.4	851	1778.0	1873.0	3556.0	3746.0
570	1721.8	1816.8	3443.6	3633.6	664	1740.6	1835.6	3481.2	3671.2	758	1759.4	1854.4	3518.8	3708.8	852	1778.2	1873.2	3556.4	3746.4
571	1722.0	1817.0	3444.0	3634.0	665	1740.8	1835.8	3481.6	3671.6	759	1759.6	1854.6	3519.2	3709.2	853	1778.4	1873.4	3556.8	3746.8
573	1722.2	1817.4	3444.4	3634.4	667	1741.0	1836.2	3482.0	3672.0	761	1759.8	1855.0	3520.0	3710.0	855	1778.8	1873.8	3557.6	3747.2
574	1722.6	1817.6	3445.2	3635.2	668	1741.4	1836.4	3482.8	3672.8	762	1760.2	1855.2	3520.4	3710.4	856	1779.0	1874.0	3558.0	3748.0
575	1722.8	1817.8	3445.6	3635.6	669	1741.6	1836.6	3483.2	3673.2	763	1760.4	1855.4	3520.8	3710.8	857	1779.2	1874.2	3558.4	3748.4
576	1723.0	1818.0	3446.0	3636.0	670	1741.8	1836.8	3483.6	3673.6	764	1760.6	1855.6	3521.2	3711.2	858	1779.4	1874.4	3558.8	3748.8
578	1723.2	1818.2	3440.4 3446 8	3636.8	672	1742.0	1837.0	3484.0	3674.0	766	1761.0	1856.0	3522.0	3712.0	009 860	1770 P	10/4.0	3550.6	3749.2
579	1723.6	1818.6	3447.2	3637.2	673	1742.4	1837.4	3484.8	3674.8	767	1761.2	1856.2	3522.4	3712.4	861	1780.0	1875.0	3560.0	3750.0
580	1723.8	1818.8	3447.6	3637.6	674	1742.6	1837.6	3485.2	3675.2	768	1761.4	1856.4	3522.8	3712.8	862	1780.2	1875.2	3560.4	3750.4
581	1724.0	1819.0	3448.0	3638.0	675	1742.8	1837.8	3485.6	3675.6	769	1761.6	1856.6	3523.2	3713.2	863	1780.4	1875.4	3560.8	3750.8
582	1724.2	1819.2	3448.4	3638.4	676	1/43.0	1838.0	3486.0	3676.0	774	1762.0	1856.8	3523.6	3/13.6	865	1780.6	1875.0	3561.2	3751.2
584	1724.6	1819.6	3449.2	3639.2	678	1743.4	1838.4	3486.8	3676.8	772	1762.2	1857.2	3524.4	3714.4	866	1781.0	1876.0	3562.0	3752.0
585	1724.8	1819.8	3449.6	3639.6	679	1743.6	1838.6	3487.2	3677.2	773	1762.4	1857.4	3524.8	3714.8	867	1781.2	1876.2	3562.4	3752.4
586	1725.0	1820.0	3450.0	3640.0	680	1743.8	1838.8	3487.6	3677.6	774	1762.6	1857.6	3525.2	3715.2	868	1781.4	1876.4	3562.8	3752.8
587	1/25.2	1820.2	3450.4	3640.4	681 682	1/44.0	1839.0	3488.0	3678.0	/75 776	1/62.8	1857.8	3525.6	3715.6	869	1781.6	1876.6 1876 9	3563.2	3753.2
589	1725.6	1820.6	3451.2	3641.2	683	1744.4	1839.4	3488.8	3678.8	777	1763.2	1858.2	3526.4	3716.4	871	1782.0	1877.0	3564.0	3754.0
590	1725.8	1820.8	3451.6	3641.6	684	1744.6	1839.6	3489.2	3679.2	778	1763.4	1858.4	3526.8	3716.8	872	1782.2	1877.2	3564.4	3754.4
591	1726.0	1821.0	3452.0	3642.0	685	1744.8	1839.8	3489.6	3679.6	779	1763.6	1858.6	3527.2	3717.2	873	1782.4	1877.4	3564.8	3754.8
592	1726.2	1821.2	3452.4 3452.8	3642.4	687	1745.0	1840.0	3490.0 3400.4	3680.0	781	1764.0	1850 0	3527.6	3718.0	875	1782.0	1877.9	3565.6	3755.6
594	1726.6	1821.6	3453.2	3643.2	688	1745.4	1840.4	3490.8	3680.8	782	1764.2	1859.2	3528.4	3718.4	876	1783.0	1878.0	3566.0	3756.0
595	1726.8	1821.8	3453.6	3643.6	689	1745.6	1840.6	3491.2	3681.2	783	1764.4	1859.4	3528.8	3718.8	877	1783.2	1878.2	3566.4	3756.4
596	1727.0	1822.0	3454.0	3644.0	690	1745.8	1840.8	3491.6	3681.6	784	1764.6	1859.6	3529.2	3719.2	878	1783.4	1878.4	3566.8	3756.8
597	1/27.2	1822.2	3454.4	3644.4	691	1/46.0	1841.0	3492.0	3682.0	785	1764.8	1859.8	3529.6	3719.6	879	1783.6	1878.6	3567.2	3/57.2
590	1727.6	1822.4	3455.2	3645.2	693	1746.2	1841.2	3492.4	3682.8	787	1765.0	1860.0	3530.0	3720.0	881	1784.0	1879.0	3568.0	3758.0
600	1727.8	1822.8	3455.6	3645.6	694	1746.6	1841.6	3493.2	3683.2	788	1765.4	1860.4	3530.8	3720.8	882	1784.2	1879.2	3568.4	3758.4
601	1728.0	1823.0	3456.0	3646.0	695	1746.8	1841.8	3493.6	3683.6	789	1765.6	1860.6	3531.2	3721.2	883	1784.4	1879.4	3568.8	3758.8
602	1728.2	1823.2	3456.4	3646.4	696	1747.0	1842.0	3494.0	3684.0	790	1765.8	1860.8	3531.6	3721.6	884	1784.6	1879.6	3569.2	3759.2
604	1728.4	1823.4	3456.8	3645.8	6097	1747.2	1842.2	3494.4 3404 9	3684.4	797 702	1766.0	1861 2	3532.0	3722.0	882	1784.8	1879.8	3569.6	3159.6
605	1728.8	1823.8	3457.6	3647.6	699	1747 6	1842.6	3495.2	3685.2	793	1766.4	1861.4	3532.4	3722.4			<u> </u>		
L					1.2.2					u							1		1

GSM1900

СН	ТХ	RX	VCO TX	VCO RX	СН	ТΧ	RX	VCO TX	VCO RX	СН	ТΧ	RX	VCO TX	VCO RX	СН	ТХ	RX	VCO TX	VCO RX
512	1850.2	1930.2	3700.4	3860.4	606	1869.0	1949.0	3738.0	3898.0	700	1887.8	1967.8	3775.6	3935.6	794	1906.6	1986.6	3813.2	3973.2
513	1850,4	1930,4	3700,8	3860,8	607	1869,2	1949,2	3738,4	3898,4	701	1888,0	1968,0	3776,0	3936,0	795	1906,8	1986,8	3813,6	3973,6
514	1850,6	1930,6	3701,2	3861,2	608	1869,4	1949,4	3738,8	3898,8	702	1888,2	1968,2	3776,4	3936,4	796	1907,0	1987,0	3814,0	3974,0
515	1850,8	1930,8	3701,6	3861,6	609	1869,6	1949,6	3739,2	3899,2	703	1888,4	1968,4	3776,8	3936,8	797	1907,2	1987,2	3814,4	3974,4
516	1851,0	1931,0	3702,0	3862,0	610	1869,8	1949,8	3739,6	3899,6	704	1888,6	1968,6	3777,2	3937,2	798	1907,4	1987,4	3814,8	3974,8
517	1851,2	1931,2	3702,4	3862,4	611	1870,0	1950,0	3740,0	3900,0	705	1888,8	1968,8	3777,6	3937,6	799	1907,6	1987,6	3815,2	3975,2
518	1851,4	1931,4	3702,8	3862,8	612	1870,2	1950,2	3740,4	3900,4	706	1889,0	1969,0	3778,0	3938,0	800	1907,8	1987,8	3815,6	3975,6
519	1851,6	1931,6	3703,2	3863,2	613	1870,4	1950,4	3740,8	3900,8	707	1889,2	1969,2	3778,4	3938,4	801	1908,0	1988,0	3816,0	3976,0
520	1851,8	1931,8	3703,6	3863,6	614	1870,6	1950,6	3741,2	3901,2	708	1889,4	1969,4	3778,8	3938,8	802	1908,2	1988,2	3816,4	3976,4
521	1852,0	1932,0	3704,0	3864,0	615	1870,8	1950,8	3741,6	3901,6	709	1889,6	1969,6	3779,2	3939,2	803	1908,4	1988,4	3816,8	3976,8
522	1852,2	1932,2	3704,4	3864,4	616	1871,0	1951,0	3742,0	3902,0	710	1889,8	1969,8	3779,6	3939,6	804	1908,6	1988,6	3817,2	3977,2
523	1852,4	1932,4	3704,8	3864,8	617	1871,2	1951,2	3742,4	3902,4	711	1890,0	1970,0	3780,0	3940,0	805	1908,8	1988,8	3817,6	3977,6
524	1852,6	1932,6	3705,2	3865,2	618	1871,4	1951,4	3742,8	3902,8	712	1890,2	1970,2	3780,4	3940,4	806	1909,0	1989,0	3818,0	3978,0
525	1852,8	1932,8	3705,6	3865,6	619	1871,6	1951,6	3743,2	3903,2	713	1890,4	1970,4	3780,8	3940,8	807	1909,2	1989,2	3818,4	3978,4
526	1853,0	1933,0	3706,0	3866,0	620	1871,8	1951,8	3743,6	3903,6	714	1890,6	1970,6	3781,2	3941,2	808	1909,4	1989,4	3818,8	3978,8
527	1853,2	1933,2	3706,4	3866,4	621	1872,0	1952,0	3744,0	3904,0	715	1890,8	1970,8	3781,6	3941,6	809	1909,6	1989,6	3819,2	3979,2
528	1853,4	1933,4	3706,8	3800,8	622	1872,2	1952,2	3744,4	3904,4	716	1891,0	1971,0	3782,0	3942,0	810	1909,8	1989,8	3819,6	3979,6
529	1053,0	1933,0	3707,2	2067.6	624	1072,4	1952,4	3744,0	2005.2	710	1091,2	1971,2	3702,4	2042,4					
530	1954.0	1024.0	2709.0	2060 0	624	1072,0	1952,0	2745,2	2005.6	710	1091,4	1071.6	2702.0	2042.0					
532	1854.0	1934,0	3708,0	3868.4	626	1873.0	1952,0	3745,0	3905,0	719	1891,0	1971,0	3783.6	3943,2					
533	1854.4	1934 4	3708.8	3868.8	627	1873.2	1953.2	3746.4	3906.4	721	1892.0	1972.0	3784.0	3944.0					
534	1854.6	1934.6	3709.2	3869.2	628	1873.4	1953.4	3746.8	3906.8	722	1892.2	1972.2	3784.4	3944.4					
535	1854.8	1934.8	3709.6	3869.6	629	1873.6	1953.6	3747.2	3907.2	723	1892.4	1972.4	3784.8	3944.8					
536	1855,0	1935,0	3710,0	3870,0	630	1873,8	1953,8	3747,6	3907,6	724	1892,6	1972,6	3785,2	3945,2					
537	1855,2	1935,2	3710,4	3870,4	631	1874,0	1954,0	3748,0	3908,0	725	1892,8	1972,8	3785,6	3945,6					
538	1855,4	1935,4	3710,8	3870,8	632	1874,2	1954,2	3748,4	3908,4	726	1893,0	1973,0	3786,0	3946,0				1	
539	1855,6	1935,6	3711,2	3871,2	633	1874,4	1954,4	3748,8	3908,8	727	1893,2	1973,2	3786,4	3946,4					
540	1855,8	1935,8	3711,6	3871,6	634	1874,6	1954,6	3749,2	3909,2	728	1893,4	1973,4	3786,8	3946,8					
541	1856,0	1936,0	3712,0	3872,0	635	1874,8	1954,8	3749,6	3909,6	729	1893,6	1973,6	3787,2	3947,2					
542	1856,2	1936,2	3712,4	3872,4	636	1875,0	1955,0	3750,0	3910,0	730	1893,8	1973,8	3787,6	3947,6					
543	1856,4	1936,4	3712,8	3872,8	637	1875,2	1955,2	3750,4	3910,4	731	1894,0	1974,0	3788,0	3948,0					
544	1856,6	1936,6	3713,2	3873,2	638	1875,4	1955,4	3750,8	3910,8	732	1894,2	1974,2	3788,4	3948,4					
545	1856,8	1936,8	3713,6	3873,6	639	1875,6	1955,6	3751,2	3911,2	733	1894,4	1974,4	3788,8	3948,8					
546	1857,0	1937,0	3714,0	3874,0	640	1875,8	1955,8	3751,6	3911,6	734	1894,6	1974,6	3789,2	3949,2	L		ļ		
547	1857,2	1937,2	3714,4	3874,4	641	1876,0	1956,0	3752,0	3912,0	735	1894,8	1974,8	3789,6	3949,6					
548	1857,4	1937,4	3/14,8	3874,8	642	1876,2	1956,2	3752,4	3912,4	736	1895,0	1975,0	3790,0	3950,0					
549	1857,6	1937,6	3715,2	3875,2	643	1876,4	1956,4	3752,8	3912,8	737	1895,2	1975,2	3790,4	3950,4					
550	1857,8	1937,8	3715,6	3875,0	644	1876,0	1956,6	3753,2	3913,2	738	1895,4	1975,4	3790,8	3950,8					
551	1050,0	1936,0	2716.4	2076 4	645	1070,0	1950,0	3753,0	2014.0	739	1095,0	1975,0	2701.6	2051,2					
552	1858 /	1930,2	3716.8	3876.8	640	1877.2	1957,0	3754,0	3914,0	740	1895,0	1975,0	3791,0	3052.0					
554	1858.6	1938.6	3717.2	3877.2	648	1877.4	1957.4	3754.8	3914.8	741	1896.2	1976.2	3792.0	3952,0					
555	1858.8	1938.8	3717,2	3877.6	649	1877.6	1957.6	3755.2	3915.2	742	1896.4	1976.4	3792.8	3952,4					
556	1859.0	1939.0	3718.0	3878.0	650	1877.8	1957.8	3755.6	3915.6	744	1896.6	1976.6	3793.2	3953.2					
557	1859.2	1939.2	3718.4	3878.4	651	1878.0	1958.0	3756.0	3916.0	745	1896.8	1976.8	3793.6	3953.6					
558	1859,4	1939,4	3718,8	3878,8	652	1878,2	1958,2	3756,4	3916,4	746	1897,0	1977,0	3794,0	3954,0					
559	1859.6	1939.6	3719.2	3879.2	653	1878.4	1958.4	3756.8	3916.8	747	1897.2	1977.2	3794.4	3954.4					
560	1859,8	1939,8	3719,6	3879,6	654	1878,6	1958,6	3757,2	3917,2	748	1897,4	1977,4	3794,8	3954,8					
561	1860,0	1940,0	3720,0	3880,0	655	1878,8	1958,8	3757,6	3917,6	749	1897,6	1977,6	3795,2	3955,2					
562	1860,2	1940,2	3720,4	3880,4	656	1879,0	1959,0	3758,0	3918,0	750	1897,8	1977,8	3795,6	3955,6					
563	1860,4	1940,4	3720,8	3880,8	657	1879,2	1959,2	3758,4	3918,4	751	1898,0	1978,0	3796,0	3956,0					
564	1860,6	1940,6	3721,2	3881,2	658	1879,4	1959,4	3758,8	3918,8	752	1898,2	1978,2	3796,4	3956,4					
565	1860,8	1940,8	3721,6	3881,6	659	1879,6	1959,6	3759,2	3919,2	753	1898,4	1978,4	3796,8	3956,8					
566	1861,0	1941,0	3722,0	3882,0	660	1879,8	1959,8	3759,6	3919,6	754	1898,6	1978,6	3797,2	3957,2					
567	1861,2	1941,2	3722,4	3882,4	661	1880,0	1960,0	3760,0	3920,0	755	1898,8	1978,8	3797,6	3957,6					
568	1861,4	1941,4	3722,8	3882,8	662	1880,2	1960,2	3760,4	3920,4	756	1899,0	1979,0	3798,0	3958,0					
569	1861,6	1941,6	3723,2	3883,2	663	1880,4	1960,4	3760,8	3920,8	757	1899,2	1979,2	3798,4	3958,4					
570	1861,8	1941,8	3723,6	3883,6	664	1880,6	1960,6	3761,2	3921,2	758	1899,4	1979,4	3798,8	3958,8					
571	1002,0	1942,0	3724,0	3084,0	005	1000,8	1960,8	3/01,6	აყ∠1,6 2022 0	/59	1099,6	1070.0	3799,2	3959,2					L
5/2	1962,2	1942,2	3724,4	3004,4	000	1001,0	1901,0	3762.0	3022,0	760	1000.0	1000.0	30000	3060 0				<u> </u>	-
5/3	1862.9	1042,4	3725 0	3004,8	660	18.91 0	1061.2	3762.4	3022,4	760	1000.4	1000,0	3800.0	3060.0			-	-	
576	1863 0	1943.0	3726.0	3886.0	670	1881 9	1961 8	3763.6	3923.6	764	1900,4	1980.4	3801.2	3961 2			-	-	
577	1863.2	1943.2	3726.4	3886.4	671	1882.0	1962.0	3764.0	3924.0	765	1900.8	1980.8	3801.6	3961.6					
578	1863.4	1943.4	3726.8	3886.8	672	1882.2	1962.2	3764.4	3924.4	766	1901.0	1981.0	3802.0	3962.0	1		-	1	
579	1863,6	1943,6	3727,2	3887,2	673	1882,4	1962,4	3764,8	3924,8	767	1901.2	1981.2	3802,4	3962,4				İ	
580	1863,8	1943,8	3727,6	3887,6	674	1882,6	1962,6	3765,2	3925,2	768	1901,4	1981,4	3802,8	3962,8				1	
581	1864,0	1944,0	3728,0	3888,0	675	1882,8	1962,8	3765,6	3925,6	769	1901,6	1981,6	3803,2	3963,2					
582	1864,2	1944,2	3728,4	3888,4	676	1883,0	1963,0	3766,0	3926,0	770	1901,8	1981,8	3803,6	3963,6					
583	1864,4	1944,4	3728,8	3888,8	677	1883,2	1963,2	3766,4	3926,4	771	1902,0	1982,0	3804,0	3964,0					
584	1864,6	1944,6	3729,2	3889,2	678	1883,4	1963,4	3766,8	3926,8	772	1902,2	1982,2	3804,4	3964,4					
585	1864,8	1944,8	3729,6	3889,6	679	1883,6	1963,6	3767,2	3927,2	773	1902,4	1982,4	3804,8	3964,8					
586	1865,0	1945,0	3730,0	3890,0	680	1883,8	1963,8	3767,6	3927,6	774	1902,6	1982,6	3805,2	3965,2					
587	1865,2	1945,2	3/30,4	3890,4	681	1884,0	1964,0	3/68,0	3928,0	775	1902,8	1982,8	3805,6	3965,6	ļ				
588	1865,4	1945,4	3/30,8	3890,8	682	1084,2	1964,2	3/68,4	3928,4	/76	1903,0	1983,0	3806,0	3966,0			ļ		
569	1865 0	1945,6	3731,2	3801.2	604	1894.0	1904,4	3760.0	J∀∠ŏ,ŏ 3020.0	770	10024	1003,2	3806 0	3066.0				<u> </u>	
504	1866 0	1945,8	37320	3802 0	685	1884.9	1964,0	3760 6	3020 6	770	1903,4	1983,4	3807 2	3967 2					
502	1866.2	1946 2	3732.0	3802.0	686	1885.0	1965 0	3770.0	3930.0	780	1903,0	1983.8	3807.6	3967.6					
593	1866 4	1946 /	3732.8	3892.8	687	1885 2	1965.2	3770 /	3930 4	781	1904 0	1984 0	3808.0	3968.0				<u> </u>	
594	1866.6	1946.6	3733.2	3893.2	688	1885.4	1965.4	3770.8	3930.8	782	1904.2	1984.2	3808.4	3968.4				1	
595	1866.8	1946.8	3733.6	3893.6	689	1885.6	1965.6	3771.2	3931.2	783	1904.4	1984.4	3808.8	3968.8				1	
596	1867,0	1947.0	3734,0	3894.0	690	1885.8	1965.8	3771,6	3931,6	784	1904.6	1984.6	3809,2	3969,2	1			i	
597	1867,2	1947,2	3734,4	3894,4	691	1886,0	1966,0	3772,0	3932,0	785	1904,8	1984,8	3809,6	3969,6					
598	1867,4	1947,4	3734,8	3894,8	692	1886,2	1966,2	3772,4	3932,4	786	1905,0	1985,0	3810,0	3970,0					
599	1867,6	1947,6	3735,2	3895,2	693	1886,4	1966,4	3772,8	3932,8	787	1905,2	1985,2	3810,4	3970,4					
600	1867,8	1947,8	3735,6	3895,6	694	1886,6	1966,6	3773,2	3933,2	788	1905,4	1985,4	3810,8	3970,8					
601	1868,0	1948,0	3736,0	3896,0	695	1886,8	1966,8	3773,6	3933,6	789	1905,6	1985,6	3811,2	3971,2					
602	1868,2	1948,2	3736,4	3896,4	696	1887,0	1967,0	3774,0	3934,0	790	1905,8	1985,8	3811,6	3971,6					
603	1868,4	1948,4	3736,8	3896,8	697	1887,2	1967,2	3774,4	3934,4	791	1906,0	1986,0	3812,0	3972,0					
604	1868,6	1948,6	3737,2	3897,2	698	1887,4	1967,4	3774,8	3934,8	792	1906,2	1986,2	3812,4	3972,4					
605	1868.8	1948.8	3737.6	3897.6	699	1887.6	1967.6	3775.2	3935.2	793	1906.4	1986.4	3812.8	3972.8				1	

Phoenix tuning

Before any tuning the phone should be synchronized with the PC.

Connect the phone to a PC with DAU-9P cable and dongle and follow the following instructions:

Provide the phone with power supply

Start Phoenix Service Software and open FBUS connection

Select File Scan Product

Wait until phone information is shown in the lower right corner of the screen.

RF tuning after repairs

Different repairs require different tuning. In general it is necessary to determine in which section the repair was done to select which tunings to perform. To determine if RF tuning is necessary after repair it is important that the functionality of the repaired circuit is understood well.

- In general repairs in the TX part will require "TX Power Level Tuning" and "TX IQ Tuning".
- In general repairs in the RX part or PLL part always require "RX Calibration", "Rx Band Filter Response Calibration".
- If Mjoelner is changed all calibrations have to be done.

Other parts interfacing to TX, RX or PLL might require tuning, but common sense should be used, e.g. if a component that has no influence on RF performance has been changed, e.g. the microphone, on/off key, mechanical parts or similar, there is no need to do any RF tuning.

RX Calibration (incl. VCXO Calibration)

The "RX calibration" is used to determine gain at different gain-settings for front-end and Mjoelner and needs to be done in all three bands. The procedure begins with EGSM and continues with GSM1800 and GSM1900.

RX-calibration requires an external signal generator.

RX-calibration in EGSM900 combines two tunings, VCXO-calibration and AGC-calibration:

Calibration of GSM1800 and GSM1900 band only determines AGC values.

The **VCXO-calibration** finds out a calibration value for VCXO control, an AFC initial value and 3 AFC-slope coefficients.

A value (RF_TEMP), which represents the RF hardware temperature, is determined during RX Calibration. This temperature value is used by DSP to RSSI reporting in Normal mode of the phone. It is not visible in the calibration process.

AGC-calibration:

The AGC-calibration finds the gain values of the RX-gain system. The AGC consists of RF LNA, which can be either on or off (gain difference between on and off state is nominally 30dB) and BB gain which can be controlled in 6dB steps. This gives 15 gain steps RSSI0 to RSSI14. LNA is off for steps RSSI0 to RSSI4. AGC-calibration measures the gain at gain step RSSI4 and RSSI7. The other gain values are calculated.

VCXO-calibration:

The VCXO-calibration ensures the function of an **initial** synchronization (before location update is done) when the mobile station is in Normal mode. For an error free initial synchronization, the 26MHz frequency of the VCXO must be accurate enough. Therefore, a **VCXO cal** value is written into the RefOSCCAL register of the Mjoelner.

During VCXO-calibration, the **VCXO cal** value is changed by a DSP-algorithm until a synchronization is possible. This means the VCXO oscillates at 26 MHz with a sufficient minimum frequency error.

To further minimize the frequency error, an initial **AFC value** is determined by the DSP and written into RefOSCAFC register of the Mjoelner.

Also the DSP algorithm determines 3 AFC slope coefficients **Slope C1...3** during VCXO calibration. One AFC slope value is not sufficient for Mjoelner **F3**, because the AFC slope is non-linear in this chip.

900

EGSM

Set operating mode to local mode

Select	Tuning		Alt-ı
	RX	(Calibration	С
Wait until t	he RX Calibration win	idow pops up.	
Select	Band		GSM

NOKIA

CCS Technical Documentation

The setup should now look like this:

We Phoenix File Edit Product Flashing Testing T	uning Tools Window Help
D 😂 🖬 Dperating mode: Local	➡ <u>R</u> ead Band: GSM 900 ▼
K Rx Calibration	
PM values:	<u>Start</u>
	Save & Continue
	Help
Ready	V 2.24 , 024 //

Press Start and a window pops up:

Rx Calibration with band EG5M900	×
Set the Rf signal generator:	
Power level: -60 dBm	
Input signal frequency: 942,467710 MHz	
Press OK to tune, press Cancel or ESC to exi	it tuning process.
OK Cancel	

Connect an external signal generator to the RF connector of the phone and set the generator as told in the window, taking care for external cable losses.

Press ok and the window closes.

A typical result will look like this:

We Phoenix File Edit Product Flashing Testing T	uning Tools Window Help
Deperating mode: Local	▶ <u>B</u> ead Band: GSM 308 ★
K Rx Calibration	
Calibration values: VCX0 cal: 561.000000 Afc value: 3148.000000 Slope C1: 2872.000000 Slope C2: -549.000000 Slope C3: 1.000000 Rssi 0: 61.734375 Rssi 1: 67.734375 Rssi 2: 73.734375 Rssi 3: 79.734375 Rssi 4: 85.734375 Rssi 5: 97.125000 Rssi 6: 103.125000 Rssi 7: 109.125000 Rssi 8: 115.125000 Rssi 9: 121.125000 Rssi 10: 127.125000 Rssi 11: 133.125000 Rssi 12: 139.125000 Rssi 13: 145.125000 Rssi 14: 151.125000 Rssi 14: 151.125000	Start Save & Continue Help
Ready	₩ 2.24 , 024

Press Save and Continue. RX Calibration for EGSM is finished and the tuning continues automatically with GSM1800.

GSM1800 (DCS/PCN)

Set the generator as instructed and press OK.

A 1	typical	result	will	look	like	this:
-----	---------	--------	------	------	------	-------

le Edit Product Flashing Testing Tyning	Iools Window Help
Ax Calibration Calibration values:	Save & Continue Help

Press Save and Continue. RX Calibration for GSM1800 is finished and the tuning continues automatically with GSM 1900.

GSM1900 (PCS)

Set the generator as instructed and press OK.

A typical result will look like this:

<mark>168 Phoenix</mark> Eile <u>E</u> dit <u>P</u> roduct Flashing Te <u>s</u> ting 1	Luning ⊥ools <u>W</u> indow <u>H</u> elp
🗋 🗅 😂 🔚 🗌 Operating mode: 🛛 Local	💌 Read 🛛 Band: GSM 1900 💌
Rs: Calibration Calibration values: Rssi 0 62.671875 Rssi 1 68.671875 Rssi 2 74.671875 Rssi 3 80.671875 Rssi 4 86.671875 Rssi 5 93.140625 Rssi 6 99.140625 Rssi 7 105.140625 Rssi 9 117.140625 Rssi 10 123.140625 Rssi 11 129.140625 Rssi 12 135.140625 Rssi 13 141.140625 Rssi 14 147.140625 Rssi 14 147.140625	Image: Image
Ready	V 2.24 . C //

Press Save and Continue. RX Calibration is finished and the tuning is fully completed.

RX AGC limits

The Rx calibration is only valid if it is within certain limits.

For the most recent limits see NEM-4 Production Testing Requirements,

If calibration is not within limits, there is a fault in the RX chain.
Below the values for RSSI4 and RSSI7 are given:

RSSI4:(Rx A5)

band	min	typ	max
EGSM900	81	86	91
GSM1800	79	84	89
GSM1900	79	85	89

RSSI7:(Rx A8)

band	min	typ	max
EGSM900	103	108	113
GSM1800	99	105	109
GSM1900	100	104	110

[This page intentionally left blank.]

RX Band Filter Response Compensation

RX Band Filter Response Compensation needs to be done on all three bands. The procedure begins with EGSM and continues automatically with GSM1800 and GSM1900.

Set operating mode to local mode.

Select	Testing	Alt-S
	RF Controls	V
Wait until the RF Cont	rols window pops up	
Select Band GSM 900		
Select	Tuning	Alt-u
	RX Band Filter Response Compensation	В

Select Input Signal Level -60dBm.

The setup should now look like this:

<mark>& Phoenix</mark> Eile <u>E</u> dit Product Flashing Te <u>s</u> ting	g T <u>u</u> ning <u>I</u> o	iols <u>W</u> indow <u>H</u> elp			
🗋 😂 🔚 🛛 Operating mode: 🛛	cal 🗵 📃	Read Band: GSM 900	-		
🕼 RF Controls 🛛 🥻	Rx Band Fil	ter Response Compensation			
Band: GSM 900	Input Signal Le	vel (dBm): 🚺 📩			Start
Active Unit: Rx 💌	Channel	Input Frequency (MHz)	Measured Level Difference (dB)		Save & Epitinue
Operation Mode: Burst					Help
Rx/Tx Channel: 37 942.4					Tuning mode
Monitor Channet 37 942.4					<u>Automatic</u> <u>Manual</u>
AGC: 14, FEG_ON + 24 dB + c					- Manager
AFC: 3139					
				Ŧ	Copying table to clipboard: press mouse left button on the left top of the table (with text 'Channel').
leady		V2	24 , 02-05-03 , NEM-4 . (c)	NMP.	

Manual Tuning

EGSM900

Select Manual Tuning mode. Press Start. A window pops up:

Rx Band Filter Response Compensation for EGSM900	×
Manual Tuning - stage 1 of 9.	
Set the Rf signal generator:	
Power level: -60 dBm + cable attenuation	
Input signal frequency: 923.26771 MHz	
Press OK to tune, press Cancel or ESC to exit tuning process	5,
OK Cancel	

Connect an external signal generator to the RF connector of the phone and set the generator as told in the window.

Press OK and a new window pops up:

Rx Band Filter Response Compensation for EG5M900	×
Manual Tuning - stage 2 of 9.	
Set the Rf signal generator:	
Power level: -60 dBm + cable attenuation	
Input signal frequency: 925.26771 MHz	
Press OK to tune, press Cancel or ESC to exit tuning proces	;s.
OK Cancel	

Set the generator as told in the window.

Press OK and a new window pops up. Repeat this sequence **9 times** until all channels have been tuned.

Press Save and Continue. RX Band Filter Response Compensation for EGSM is finished and the tuning continues automatically with GSM1800.

GSM1800 (DCS/PCN)

Band Filter Response Compensation has to be done first for EGSM band (see previous chapter). After tuning the EGSM, the tuning continues automatically with GSM1800 and the following window should be seen:

Rx Band Filter Response Compensation for GSM1800	x
Manual Tuning - stage 1 of 9.	
Set the Rf signal generator:	
Power level: -60 dBm + cable attenuation	
Input signal frequency: 1802.26771 MHz	
Press OK to tune, press Cancel or ESC to exit tuning process	ŝ
OK Cancel	

Set the generator as instructed and press OK.

Repeat this sequence 9 times until all channels have been tuned.

Press Save and Continue. RX Band Filter Response Compensation for GSM1800 is finished and the tuning continues automatically with GSM1900.

GSM1900 (PCS)

Band Filter Response Compensation has to be done first for EGSM and GSM1800 bands (see previous chapters). After the other bands have been tuned, the tuning continues automatically with GSM1900 and the following window should be seen:

R	x Band Filter Response Compensation for GSM1900
	Manual Tuning - stage 1 of 9.
	Set the Rf signal generator:
	Power level: -60 dBm + cable attenuation
	Input signal frequency: 1927.06771 MHz
	Press OK to tune, press Cancel or ESC to exit tuning process.
	OK Cancel

Set the generator as instructed and press OK.

Repeat this sequence 9 times until all channels have been tuned.

Press Save and Continue. RX Band Filter Response Compensation for all three bands is finished and the tuning is fully completed.

Auto Tuning

A faster and more convenient method for Band Filter Calibration can be performed by clicking on "Auto Tuning". This requires a signal Generator that can be programmed to sweep a user defined list of frequencies.

EGSM900

Select Automatic Tuning mode. Press start and then Tune. A window pops up:

Rx Band Filter Response Compensation for EGSM900	×
Automatic Tuning.	
Set the Rf signal generator:	
Power level:	
-60 dBm + cable attenuation	
Input signal frequencies to sweep:	
923.26771 MHz	
925.26771 MHz	
927.66771 MHz	
932.06771 MHz	
942.46771 MHz	
953.06771 MHz	
957.86771 MHz	
959.86771 MHz	
962.26771 MHz	
Press OK to tune, press Cancel or ESC to exit tuning process	i.
OK Cancel	

Connect an external signal generator to the RF connector of the phone and let the signal generator step sweep through the programmed frequency list.

Press OK.

Press Save and Continue. RX Band Filter Response Compensation for EGSM is finished and the tuning continues automatically with GSM1800.

GSM1800 (DCS/PCN)

Band Filter Response Compensation has to be done first for EGSM band (see previous chapter). After tuning the EGSM band, the tuning continues automatically with GSM1800 and the following window should be seen:

R Band Filter Response Compensation for GSM1800	×
Automatic Tuning.	
Set the Rf signal generator:	
Power level:	
Toput signal frequencies to sweep:	
1802.26771 MHz	
1805.26771 MHz 1809.86771 MHz	
1824.06771 MHz	
1842.86771 MHz 1861.06771 MHz	
1876.86771 MHz	
1879.86771 MHz 1884.46771 MHz	
Press OK to tune, press Cancel or ESC to exit tuning proces	s,
OK Cancel	

Set the generator to sweep the frequency list as instructed and press OK.

Press Save and Continue. RX Band Filter Response Compensation for GSM1800 is finished and the tuning continues automatically with GSM1900.

GSM1900 (PCS)

Band Filter Response Compensation has to be done first for EGSM and GSM1800 bands (see previous chapters). After tuning the other bands have been tuned, the tuning continues automatically with GSM1900 and the following window should be seen:

Band Filter Response Compensation for G5M1900	×
Automatic Tuning,	
Set the Rf signal generator:	
Power level:	
-60 dBm + cable attenuation	
Input signal frequencies to sweep:	
1927.06771 MHz	
1930.26771 MHz	
1935.26771 MHz	
1945.06771 MHz	
1960.06771 MHz	
1975.06771 MHz	
1986.66771 MHz	
1989.86771 MHz	
1994.86771 MHz	
Press OK to tune, press Cancel or ESC to exit tuning process	i.
OK Cancel	

Set the generator to sweep the frequency list as instructed and press OK.

Press Save and Continue. RX Band Filter Response Compensation for all three bands is finished and the tuning is fully completed.

RX Channel Select Filter Calibration

This calibration is calibrating the Base band filter inside Mjoelner. It is done by internally measuring a prototype filter, for this reason the calibration is done once, not separately in 3 bands.

Set operating mode to local mode

Tuning

Select

Alt-u

RX Channel Select filter Calibration Н

Check Save to Phone box.

NOKIA

CCS Technical Documentation

The setup should now look like this:

Image: Second state in the second state is a second state in the s	x/Tx Channel: 37 9	42.400000
Rx Channel Select Filter Calibration Filter Adjustment Decimal 34 Hex 0x22 xTau Binary 100010 Capacitor array 2 2 Image: 5 4 3 2 2	I Save to Phone	Start Tune Stop Help

Press Tune.

Press Stop. Channel select filter calibration is finished and the tuning is fully completed.

TX Power tuning

This tuning must be done in all three bands.

Note: TX Power tuning must be done with a peak power meter, e.g. Anritsu model ML2408A with Anritsu Peak Power Sensor MA2442A and a suitable attenuator.

The use of a spectrum analyser or the power meter in GSM testers is likely to cause larger error than the use of a dedicated power meter and might cause the phone to be non-compliant with GSM specifications.

Connect a calibrated powermeter to the RF connector of the phone.

Set operating mode of the phone to Local.

Select Tuning [Alt-U] TX Power Level Tuning [L]

Wait until the TX Power Level Tuning window pops up. Press Start.

TX Power Level Tuning procedure begins from EGSM900 and continues automatically to GSM1800 (PCS/PCN) and GSM1900 (PSCS).

<u>File</u> Edit	Product Flashin	ng Te <u>s</u> ting T <u>u</u>	ıning <u>I</u> ools <u>W</u> indow <u>H</u> elp				
🗅 😅	Derating	mode: Local	<u>R</u> ead Tx Power Level:	0 -	Tx PA Mode: High 💌	Tx Data Type:	All 1
🕼 Ta Po	ower Level Tuni	ng		ž			
5 6 7	Coefficient T 0.7362 0.6527 0.5544	arget dBm 32.5 31.0 29.0	Save & Continue	Spectru	ım Analyzer Settings		×
8 9 10 11 12 13 14 15 16 17 18 19	0.4783 0.4179 0.3702 0.3317 0.3005 0.2759 0.2562 0.2402 0.2402 0.2275 0.2175 0.2038	27.0 25.0 23.0 21.0 19.0 15.0 15.0 13.0 11.0 9.0 7.0 5.0	Band: 897,4 MHz Tx PA mode: High	•	Frequency: Resolution Band Width Video Band Width Video Trig Sweep Time Span Detector:	897,4 MHz 3 kHz 3 kHz Free Run 3 s 200 kHz Max Peak	
Base Test Tx chai Freque	0.1593 0.1593 nnet: 37 ncy: 897.40 MHz	-30.0	Help			OK	

EGSM900 (EGSM)

If a spectrum analyser is used, follow the instruction window. Press OK to continue.

From the main toolbar, select TX Data Type Random and TX PA Mode High.

Tune the power levels according to the table below by adjusting the corresponding coefficient values. The levels mentioned in the table below differ to some extent from the target values mentioned in Phoenix, since they are product specific.

Table 1: EGSM900

PL	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	Base
dBm	32.5	31	29	27	25	23	21	19	17	15	13	11	9	7	5	-28

Press Save and Continue to tune the PA Low Mode. In the Spectrum Analyzer Settings window, press OK.

From the main toolbar, select TX Data Type Random and TX PA Mode Low.

Tune the power levels (except levels 5 and 6) according to the previous table by adjusting the corresponding coefficient values.

Press Save and Continue in order to continue with the next band.

GSM1800 (DCS/PCN)

Change the center frequency of the Spectrum Analyzer in the Spectrum Analyzer Settings window as instructed and press OK.

From the main toolbar, select TX Data Type Random and TX PA Mode High.

Tune the power levels according to the table below by adjusting coefficient values. The levels below differ to some extent from the target values in Phoenix, since they are product specific.

Table 2: GSM1800

PL	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Base
dBm	30	28	26	24	22	20	18	16	14	12	10	8.5	7	5.5	4.3	3	-28

Press Save and Continue in order to continue with the next band.

GSM1900(PCS)

Change the center frequency of the spectrum analyzer as instructed in the Spectrum Analyzer Settings window and press OK.

From the main toolbar, select TX Data Type Random and TX PA Mode High.

Tune the power levels according to the table below by adjusting coefficient values. The levels below differ to some extent from the target values in Phoenix, since they are product specific.

PL	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Base
dBm	30	28	26	24	22	20	18	16	14	12	10	8.2	6.4	4.6	2.8	1	-28

Table 3:

Press Save and Continue to finish TX Power Level Tuning.

TX I/Q Tuning

This tuning must be done in all three bands.

Caution: In case you use a spectrum analyser make sure that the external attenuation (20 – 30dB) between phone and spectrum analyser is high enough that the input of the analyser can't be destroyed. Adjust the reference level offset according to the insertion loss from the phone to the spectrum analyser.

Connect a Spectrum Analyzer or GSM tester with the option *Narrow Spectrum' to the RF connector of the phone.

Select Tuning [Alt-U] TX IQ Tuning [I]

Wait until the TX IQ Tuning window pops up. Press Start.

Set the spectrum analyzer according to the instruction window and press OK. TX IQ tuning procedure begins from EGSM900, and continues automatically to GSM1800 (PCS/ PCN) and GSM1900 (PCS).

EGSM900 (EGSM)

If a spectrum analyzer is used then use the following settings.

Table 4:

	EGSM/EGSM900
Center Frequency	897.4 MHz
Frequency Span	200/300 kHz
Resolution Bandwidth	3kHz
Video Bandwidth	3kHz
Sweep Time	3 sec.
Sweep Туре	Clear/Write
Detector Type	Max Peak
Reference level	35 dBm
	EGSM/EGSM900
Marker 1	897.33229 MHz
Marker 2	897.4 MHz
Marker 3	897.46771 MHz

The following default values of the main toolbar should be used:

Select

CCS Technical Documentation

Band	GSM 900
Active Unit	ТХ
Operation Mod	e Burst
RX/TX Channel	37
TX PA Mode	Free
TX Data Type	All1
Testing [Alt-S]	RF Controls [R]

Wait until the RF Controls window pops up. Choose TX Power Level 5.

The spectrum analyzer shows now a plot like this:

The purpose of this tuning is to tune the carrier signal and the +67kHz signal to a minimum level (Marker 2 and 3).

Use the variables 'TX I DC offset' and 'TX Q DC offset' to adjust the carrier signal to a minimum level (Marker 2).

After tuning to the minimum the level difference between the peak levels at marker 1 and 2 must exceed 40dB.

Tuning is possible by using arrow keys on the keyboard. Pushing the sliders by using the mouse is less sensitive but even possible.

The Spectrum Analyzer now shows a plot like this:

Use the variables 'Amplitude difference' and 'Phase difference' to adjust the +67kHz signal to a minimum level (Marker 3). After tuning to the minimum the level difference between the peak levels at marker 1 and 3 must exceed 40dB. Tuning is possible by using arrow keys on the keyboard. Pushing the sliders by using the mouse is less sensitive but even possible. NOKIA

CCS Technical Documentation

The Spectrum Analyzer now shows a plot like this:

Press Save and Continue in order to continue with the next band.

<u>Note:</u> The optimal values for I and Q Offset and Amplitude and Phase Difference vary from phone to phone.

GSM1800 (DCS/PCN)

If a spectrum analyzer is used then use the following settings.

Table 5:						
	GSM1800					
Center Frequency	1747.8MHz					
Frequency Span	200/300 kHz					
Resolution Bandwidth	3 kHz					
Video Bandwidth	3 kHz					
Sweep Time	3 sec.					
Sweep Туре	Clear/Write					
Detector Type	Max Peak					
Reference level	35 dBm					
Marker 1	1747.73229 MHz					
Marker 2	1747.8 MHz					
Marker 3	1747.86771 MHz					

The following default values of the main tool bar should be used:

Band	GSM 1800
Active Unit	ТХ
Operation Mode	Burst
RX/TX Channel	700
TX PA Mode	Free
TX Data Type	All1

Select TX Power Level 0 from the RF Controls window.

NOKIA

CCS Technical Documentation

The purpose of this tuning is to tune the carrier signal and the +67kHz signal to a minimum level (Marker 2 and 3).

Use the variables 'TX I DC offset' and 'TX Q DC offset' to adjust the carrier signal to a minimum level (Marker 2). After tuning to the minimum the level difference between the peak levels at marker 1 and 2 must exceed 40dB.

Tuning is possible by using arrow keys on the keyboard. Pushing the sliders by using the mouse is less sensitive but possible.

The Spectrum Analyzer now shows a plot like this:

Use the variables 'Amplitude difference' and 'Phase difference' to adjust the +67kHz signal to a minimum level (Marker 3). After tuning to the minimum the level difference between the peak levels at marker 1 and 3 must exceed 40dB. Tuning is possible by using arrow keys on the keyboard. Pushing the sliders by using the mouse is less sensitive but even possible. NOKIA

NEM-4 RF Troubleshooting

Press Save and Continue in order to continue with the next band.

<u>Note:</u> The optimal values for I and Q Offset and Amplitude and Phase Difference vary from phone to phone.

GSM1900 (PCS)

If a spectrum analyzer is used then use the following settings.

Table 6:							
	GSM1900						
Center Frequency	1880MHz						
Frequency Span	200/300 kHz						
Resolution Bandwidth	3 kHz						
Video Bandwidth	3 kHz						
Sweep Time	3 sek.						
Sweep Туре	Clear/Write						
Detector Type	Max Peak						
Reference level	35 dBm						
Marker 1	1879.93229 MHz						
Marker 2	1880 MHz						
Marker 3	1880.06771 MHz						

The following default values of the main tool bar should be used:

Band	GSM 1900
Active Unit	ТХ
Operation Mode	Burst
RX/TX Channel	661
TX PA Mode	Free
TX Data Type	All1

Select TX Power Level 0 from the RF Controls window.

NOKIA

CCS Technical Documentation

The Spectrum Analyzer now shows a plot like this:

The purpose of this tuning is to tune the carrier signal and the +67kHz signal to a minimum level (Marker 2 and 3).

Use the variables 'TX I DC offset' and 'TX Q DC offset' to adjust the carrier signal to a minimum level (Marker 2).

After tuning to the minimum the level difference between the peak levels at marker 1 and 2 must exceed 40dB.

Tuning is possible by using arrow keys on the keyboard. Pushing the sliders by using the mouse is less sensitive but even possible.

Use the variables 'Amplitude difference' and Phase difference' to adjust the +67KHz signal to a minimum level (Marker 3). After tuning to the minimum the level difference between the peak levels at marker 1 and 3 must exceed 40dB, Tuning is possible by using arrow keys on the keyboard. Pushing the sliders by using the mouse is less sensitive but even possible.

The Spectrum Analyzer now shows a plot like this:

Press Save and Continue to finish the TX IQ tuning.

Note! The optimal values for I and Q Offset, Amplitude and Phase Difference vary from phone to phone.

Bluetooth Troubleshooting

CBUS

CBUS is a three wire serial interface between the main baseband components. The bus consists of data, clock and bus_enable signals. In NEM-4 the bus is connected from UPP WD2 to ZOCUS, UEM and LPRF. UPP_WD2 takes care of controlling the traffic on the bus.

If the interface is faulty from the UPP WD2's end the phone won't boot properly as powering configurations don't work. Traffic on the bus can be monitored from three pins on the LPRF module. Pins 34, 35 and 36.

Figure 1: CBUS measuring points

In the pictures below CBUS traffic at bootup is shown. CbusEnx is connected to Ch1, Cbus Da to Ch2 and CbusClk to Ch3.

If however you are able to get the phone to boot up and can reach Phoenix BB self tests it is possible to test the functionality of each component attached to Cbus. Use

ST_UEM_CBUS_IF_TEST to test UEM Cbus interface

ST_LPRF_IF_TEST to test Bluetooth Cbus interface

If an error is found testing any of the above components you should replace the failing component.

Company Confidential

FBUS

FBUS is a two wire RX and TX interface between UPP and flash/test interface. The bus goes through UEM which adjusts the voltage levels to suit UPP_WD2. The interface voltage level on the phone flash/test pad pattern is 2.78V and on the UPP WD2 end it is 1.8V. The functionality of this interface should not affect the device boot into NORMAL, LOCAL nor TEST modes. Phoenix tests can be performed through MBUS interface in the case of a failure in FBUS interface. Flashing is not possible if there is a problem in FBUS.

MBUS

MBUS is a two wire RX and TX interface between UPP and UEM. From UEM the interface continues to flash/test interface as a one wire interface. UEM also adjusts the voltage levels. The interface voltage level on the phone flash/test pad pattern is 2.78V and on the UPP WD2 end it is 1.8V. MBUS traffic between UPP WD2 and UEM can be tested with PHOENIX (ST_MBUS_RX_TX_LOOP_TEST). Flashing is not possible if there is a problem in MBUS.

Bluetooth Troubleshooting diagrams

Copyright © 2003 Nokia Corporation. Company Confidential